K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Chọn đáp án D

Giả sử mặt phẳng (P) có vectơ pháp tuyến là n ⇀ = a ; b ; c a 2 + b 2 + c 2 ≠ 0 .

Khi đó phương trình mặt phẳng (P) có dạng a x + b y + c z + d = 0 .

Do M 0 ; 0 ; 1 ∈ P  nên c + d = 0 ⇔ d = - c  

Do  N 0 ; 3 ; 1 ∈ P  nên   3 b + c + d = 0 ⇔ b = 0

Khi đó P : a x + c z - c = 0  

Từ giả thiết ta có d B ; P = 2 d A ; P

 

⇔ - 2 a + 2 c a 2 + c 2 = 2 a - c a 2 + c 2  (luôn đúng). Vậy có vô số mặt phẳng (P) thỏa mãn.

27 tháng 4 2016

Ta có Pt d2 :x+2y-5=0

vì M ϵ d1 :x-y-1=0 nên M(m,m-1)

MA2 = (-1-m)2 + (2-m+1)2 = 1+2m+m2 +9-6m+m2 =2m-4m+10

<=> MA=\(\sqrt{2m^2-4m+10}\)

d(m,d)= \(\frac{\left|m+2m-2-5\right|}{\sqrt{1^2+2^2}}\)  =\(\frac{\left|3m-7\right|}{\sqrt{5}}\)

theo bài ra thì MA=d(M,d2)

=>\(\frac{\left|3m-7\right|}{\sqrt{5}}\)=\(\sqrt{2m^2-4m+10}\)      <=>|3m-7|=\(\sqrt{5}\)\(\sqrt{2m^2-4m+10}\)

<=>9m2 -42m +49=5(2m2-4m+10)

<=>9m-42m +49=10m2 -20m +50

<=>m2 +22m +1=0

<=>m= -11+2\(\sqrt{30}\) hoặc m=-11-2\(\sqrt{30}\)

=> M(-11+2\(\sqrt{30}\) ,-12+2\(\sqrt{30}\) ) hoặc M(-11-2\(\sqrt{30}\) ,-12-2\(\sqrt{30}\) )

 

27 tháng 12 2018

a. Số đoạn thẳng vẽ được là : \(C^2_{16}=120\)
b. Số tam giác tạo thành là : \(C^3_{16}=560\)

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

KIỂM TRA HỌC KÌ II – Năm học: 2014 – 2015MÔN: TOÁN LỚP 6(Thời gian làm bài 90')Đề kiểm tra học kì 2 môn Toán lớp 6 Bài 4: (1,5 điểm) Một lớp có 40 học sinh gồm ba loại: giỏi, khá và trung bình. Số học sinh giỏi chiếm 1/5 số học sinh cả lớp. Số học sinh trung bình bằng 3/8 số học sinh còn lại.a) Tính số học sinh mỗi loại của lớp.b) Tính tỉ số phần trăm của số học sinh trung bình so...
Đọc tiếp

KIỂM TRA HỌC KÌ II – Năm học: 2014 – 2015

MÔN: TOÁN LỚP 6

(Thời gian làm bài 90')

Đề kiểm tra học kì 2 môn Toán lớp 6 

Bài 4: (1,5 điểm) Một lớp có 40 học sinh gồm ba loại: giỏi, khá và trung bình. Số học sinh giỏi chiếm 1/5 số học sinh cả lớp. Số học sinh trung bình bằng 3/8 số học sinh còn lại.

a) Tính số học sinh mỗi loại của lớp.

b) Tính tỉ số phần trăm của số học sinh trung bình so với số học sinh cả lớp.

Bài 5: (2 điểm) Cho góc bẹt xOy. Vẽ tia Oz sao cho góc yOz = 80o.

a) Tính góc xOz?

b) Vẽ Om, On lần lượt là tia phân giác của góc xOz và góc yOz. Hỏi hai góc và có phụ nhau không? Tại sao?

 


Bài 4: Để cứu trợ đồng bào bị lũ lụt, 1 tổ chức từ thiện đề ra mục tiêu là quyên góp được 8400kg gạo. Trong 3 tuần đầu, họ đã quyên được 1/2 số gạo. Sau đó quyên được 2/3 số gạo đó. Cuối cùng quyên được 1/4 số gạo đó. Hỏi họ có vượt mức đề ra không? Vượt bao nhiêu kg?

Bài 5: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ hai tia Oy và Ot sao cho góc xOy = 400; góc xOt = 800

a) Tính góc yOt. Tia Oy có phải là tia phân giác của góc xOt không?

b) Gọi Om là tia đối của tia Ox. Tính góc mOt

c) Gọi tia Ob là tia phân giác của góc mOt. Tính góc bOy.

 

 

Bài 3: (1,5đ) Lớp 6A có 40 học sinh. Cuối năm, số học sinh xếp loại khá chiếm 45% tổng số học sinh cả lớp. Số học sinh khá bằng 5/6 học sinh trung bình, còn lại là học sinh giỏi. Tính số học sinh mỗi loại.

Bài 4: (3,5đ) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ tia Ot, Oy sao cho :góc xOt = 500; góc xOy= 1000

a) Tia Ot có nằm giữa hai tia Ox và Oy không?

b) So sánh góc tOy và góc xOt

c) Tia Ot có là tia phân giác của góc xOy không? Vì sao?

GIÚP MÌNH VỚI CÁC BẠN ƠI, MÌNH TICK CHO NHÉ 

1
12 tháng 4 2016

I'm scare

 

28 tháng 2 2019

a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC

b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.

11 tháng 3 2016

a.có 18 HLP nhỏ có mặt được sơn xanh,1 HLP nhỏ có 1 mặt sơn xanh

b.có 24 HLP nhỏ được sơn đỏ ,có 12 HLP nhỏ đc sơn đỏ 2 mặt,12 HLP nhỏ đc sơn đỏ 1 mặt

c. có 3 HLP nhỏ không đc sơn mặt nào 

tích mình nhé :D thanks

19 tháng 2 2017

tự làm chị đéo biếtleuleu !!!

Câu 1: 

\(AB=\sqrt{\left[3-\left(-2\right)\right]^2+\left(3-2\right)^2}=\sqrt{26}\)

\(BC=\sqrt{\left(2-3\right)^2+\left(-2-3\right)^2}=\sqrt{26}\)

\(AC=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-2-2\right)^2}=4\sqrt{2}\)

\(P=\dfrac{AB+BC+AC}{2}=\dfrac{2\sqrt{26}+4\sqrt{2}}{2}=\sqrt{26}+2\sqrt{2}\)

\(S=\sqrt{\left(\sqrt{26}+2\sqrt{2}\right)\cdot2\sqrt{2}\cdot2\sqrt{2}\cdot\left(\sqrt{26}-2\sqrt{2}\right)}=\sqrt{18\cdot8}=12\left(đvdt\right)\)