K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Chọn đáp án C

21 tháng 5 2017

Chọn C

30 tháng 11 2018

3 tháng 12 2018

Đáp án A

Vì hai mặt phẳng (ABC), (ABD) vuông góc với nhau nên bài toán trở thành “Tính thể tích khối tròn xoay khi quay tam giác HAB quanh AB với ABCD là hình thang vuông tại A,B” như hình bên. Hai tam giác BHC và DHA đồng dạng ⇒ B H D H = H C H A = B C A D = 1 3 .

Mà B D = A D 2 + A B 2 = 2 a 3 ; A C = A B 2 + C B 2 = 2 a

Suy ra A H = 3 4 A C = 3 4 .2 a = 3 a 2 và B H = 1 4 B D = 1 4 .2 a 3 = a 3 2 .

Diện tích tam giác ABH là:

S Δ A B H = 1 2 . A H . B H = 1 2 . 3 a 2 . a 3 2 = 3 a 2 3 8 = 1 2 . d H ; B C . B C ⇒ d H ; B C = 2. 3 a 2 3 8 . a 3 = 3 a 4 .

Vậy thể tích khối tròn xoay cần tính là:

V = 1 3 π 3 a 4 2 . a 3 = 3 3 π a 2 16 .

29 tháng 6 2017

Đáp án B.

26 tháng 12 2017

Đáp án C

Phương pháp

+) Khi quay tam giác IOM quanh cạnh góc vuông OI ta được hình nón có đường cao IO và bán kính đáy IM.

+) Sử dụng công thức tính diện tích xung quanh của hình nón S x q = π r l  trong đó r, l lần lượt là bán kính đáy và độ dài đường sinh của hình nón.

Cách giải

Khi quay tam giác IOM quanh cạnh góc vuông OI ta được hình nón có đường cao IO và bán kính đáy IM. Tam giác OIM vuông cân tại I nên IM = IO = a

⇒ r = a ; h = a ⇒ l = r 2 + h 2 = a 2 ⇒ S x q = π r l = π a . a 2 = π a 2 2

27 tháng 12 2018

Chọn A.

Phương pháp

Công thức tính diện tích xung quanh hình nón có bán kính đáy , R chiều cao h và đường sinh l:  S x q = π R l .

Cách giải:

12 tháng 9 2017

Vì B A C ^ = 90 o  nên BC = 5. Khi đó

S 1 S 2 = π . 4 . 5 π . 3 . 5 = 4 3

Đáp án A

24 tháng 4 2018

Đáp án B

Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2