Trong hình vẽ bên, biết A 1 ^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

20 tháng 2 2017

2.Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)

Vậy c=0

20 tháng 2 2017

BT5: Ta có: f(1)=1.a+b=1 =>a+b=1 (1)

f(2)=2a+b=4 (2)

Trừ (1) cho (2) ta có: 2a+b-a-b=4-1 => a=3

Với a=3 thay vào (1) ta có: 3+b=1 => b=-2

Vậy a=3, b=-2

24 tháng 3 2017

Xét 2 t.h là ra mà bn : a âm - b dương

a dương -b âm ( loại vì thế k thỏa mãn bài )

26 tháng 3 2017

minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểmkhocroi

24 tháng 2 2017

Tự lực suy nghĩ mà làm một lần đi, đừng hỏi nữa.

24 tháng 2 2017

Mình có hỏi nữa đâu!

Bài 1: Cho \(\widehat{xoy}\).Tia Oz là tia phân giác của \(\widehat{xoy}\).Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz a)Cho biết \(\widehat{xoy}\) = 100 độ.Tính \(\widehat{tOh}\) ? b) Cho biết \(\widehat{tOh}\)=40 độ. Tính \(\widehat{xOy}\) ? c)Tính giá trị lớn nhất của \(\widehat{xOy}+\widehat{tOh}\)? d) Cho biết \(\widehat{xOy}+\widehat{tOh}\)=210 độ.Tính \(\widehat{xoy};\widehat{tOh}\) ? Bài 2: Cho năm tia chung gốc...
Đọc tiếp

Bài 1: Cho \(\widehat{xoy}\).Tia Oz là tia phân giác của \(\widehat{xoy}\).Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz

a)Cho biết \(\widehat{xoy}\) = 100 độ.Tính \(\widehat{tOh}\) ?

b) Cho biết \(\widehat{tOh}\)=40 độ. Tính \(\widehat{xOy}\) ?

c)Tính giá trị lớn nhất của \(\widehat{xOy}+\widehat{tOh}\)?

d) Cho biết \(\widehat{xOy}+\widehat{tOh}\)=210 độ.Tính \(\widehat{xoy};\widehat{tOh}\) ?

Bài 2: Cho năm tia chung gốc tại O;theo thứ tự OA;OB;OC;OD;OE tạo thành bốn gốc kề bù có số đo: \(\widehat{AOB}\) =30 độ; \(\widehat{BOC}\)= 70 độ; \(\widehat{COD}\) = 80 độ; \(\widehat{DOE}\) =30 độ.

1. Chứng tỏ hai \(\widehat{AOB}\)\(\widehat{DOE}\) là hai góc đối đỉnh?

2. Tính \(\widehat{EOA}\)?

Bài 3: Cho hai đường thẳng x'x và y'y cắt nhau tại điểm O.Một điểm A nằm trên tia phân giác của \(\widehat{x'Oy'}\)và một điểm B nằm trong \(\widehat{xOy}\). Biết rằng \(\widehat{yOx'}\)=120 độ; \(\widehat{BOy'}\)=150 độ.

1) Chứng tỏ rằng ba điểm A,O,B thẳng hàng

2) Kể tên và số đo của các cặp góc đối đỉnh có trên hình vẽ (không kể góc bẹt)

Mọi người ơi ,giúp tớ với! Sáng mai tớ phải đi học rồi!HUhu!bucminhgianroioho

Ai giúp được tớ thì tớ xin trân thành cảm ơn trước và mong các bạn sớm có cách làm cả ba bài bạn nhé! ngaingunghihiokvui

Tớ sẽ ticks cho các cậu nếu người nào có kết quả sớm nhất nha!thanghoabanhquangaingungoaoahehe


1
28 tháng 6 2017

bài 1 : a) oh là tia đối oz \(\Rightarrow\) zoh thẳng hàng

ot là tia đối của tia ox \(\Rightarrow\) xot thẳng hàng

ta có : xoz = \(\dfrac{100}{2}=50^0\) (oz là tia phân giác của góc xoy)

mà xoz = toh (đối đỉnh) \(\Rightarrow\) toh = 500

b) ta có : toh = xoz (đối đỉnh)

mà toh = 400 \(\Rightarrow\) xoz = 400

\(\Rightarrow\) xoy = 40.2 = 800

28 tháng 6 2017

bạn ơi tớ bảo phần ab bài 1 tớ biết làm rồi tớ muốn cậu có thể giúp tớ bài 2 và bài 3,bài 1 c,d được không

xin cảm ơn các bạn trước!

18 tháng 10 2016

trc hết D1= 70O

a) D1 = D3= 70 (đối đỉnh)

C2 + D3 = 110+70 = 180 ( 2 góc này ở

vị trí trong cùng phía) nên a//b

b) theo a) có a//b

mà c vuông góc với a => c vuong goc voi b

26 tháng 3 2017

a, Ta có: \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (1)

\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\) (1)

\(\dfrac{c}{a+b+c}< \dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (3)

Từ (1), (2), (3) \(\Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

Thầy mk hướng dẫn phần a như thế còn phần b mk ko bt lm, chúc p hk tốt ok

23 tháng 4 2017

thks bn <3

7 tháng 4 2017

Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0

[y-4] \(\ge\) 0

Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1

Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0

Tự tính ra

7 tháng 4 2017

Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé

Xin lỗi nhiều tại mình o tìm được kí hiệu đó

Bài1:

Giải 1 câu các câu sau tương tự

1.A=|x|+1

Với mọi x thì |x|>=0

=>|x|+1 >=1

Hay A>=1

Để A=1 thì |x|=0

=>x=0

Vậy...

Bài2:

1.A=−|x−2|+7

Với mọi x thì −|x−2|nhỏ hơn bằng 0

=>−|x−2|+7 nhỏ hơn bằng 7

Hay A nhỏ hơn bằng 7

Để A=7 thì |x−2|=0

=>x-2=0=>x=2

Các câu sau tương tự

3 tháng 9 2017

1) \(A=\left|x\right|+1\ge1\forall x\)

\(\Rightarrow GTNN\) của A là 1 khi \(\left|x\right|=0\Leftrightarrow x=0\)

vậy GTNN của A là 1 khi \(x=0\)

2) \(B=\left|x+1\right|-\dfrac{7}{3}\ge-\dfrac{7}{3}\forall x\)

\(\Rightarrow GTNN\) của B là \(-\dfrac{7}{3}\) khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

vậy GTNN của B là \(-\dfrac{7}{3}\) khi \(x=-1\)

3) \(C=\dfrac{2}{5}\left|2x+5\right|-2\ge-2\forall x\)

\(\Rightarrow GTNN\) của C là -2 khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow2x=-5\Leftrightarrow x=-\dfrac{5}{2}\)

vậy GTNN của C là -2 khi \(x=-\dfrac{5}{2}\)

13 tháng 8 2020

2) Gọi a,b,c là độ lớn của 3 góc A,B,C

Theo đề bài ta có:

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)

\(\Rightarrow\hept{\begin{cases}a=30\\b=60\\c=90\end{cases}}\)

Vậy 3 góc A,B,C lần lượt là 30,60 và 90 độ

13 tháng 8 2020

1) Áp dụng t/c dãy tỉ số bằng nhau:

\(a=\frac{b}{3}=\frac{c}{4}=\frac{3a-2b+2c}{3-6+8}=\frac{55}{5}=11\)

\(\Rightarrow\hept{\begin{cases}a=11\\b=33\\c=44\end{cases}}\)