Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta suy ra M và N là vị trí có li độ \(\frac{\left|A\right|\sqrt{3}}{2}\)
\(\rightarrow\frac{T}{6}=0,05s\rightarrow T=0,3s\)
Ta có :
\(\upsilon=\frac{\upsilon_{max}}{2}\rightarrow\upsilon_{max}=40\pi\left(cm\text{ / s }\right)\rightarrow A\text{ω }=A.\frac{2\pi}{T}=40\pi\)
→ A = 6cm
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)
M O1 O2 d1 d2
M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.
Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)
\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)
\(\Rightarrow d_2= d_1+80=196+80=276cm\)
Chọn D
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
Sau đây là keys
1/ \(A.T=2\pi\sqrt{\dfrac{m}{k}}\)
2/ \(D.\) Cộng hưởng cơ
3/ \(\varphi_1-\varphi_2=\pi+2k\pi=\left(2k+1\right)\pi\Rightarrow A.\left(2k+1\right)\pi\)
4/ \(\omega=2\pi f\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=\dfrac{1}{2}\left(Hz\right)\Rightarrow A.0,5Hz\)
5/ \(A.\) Cơ năng, biên độ, tần số
6/ Câu này vẽ đường tròn ra là xong thôi
\(\varphi=arc\cos\left(\dfrac{3}{6}\right)+\dfrac{\pi}{2}+arc\sin\left(\dfrac{3\sqrt{3}}{6}\right)=\dfrac{\pi}{3}+\dfrac{\pi}{2}+\dfrac{\pi}{3}=\dfrac{7\pi}{6}\left(rad\right)\)
\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{7\pi}{6.4\pi}=\dfrac{7}{24}\left(s\right)\Rightarrow A.\dfrac{7}{24}\left(s\right)\)
7/ \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}k\dfrac{4}{9}A^2\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{2}{9}kA^2}{\dfrac{1}{2}kA^2}=\dfrac{4}{9}\Leftrightarrow W_t=\dfrac{4}{9}W\left(J\right)\)
\(\Rightarrow W_d=W-W_t=W-\dfrac{4}{9}W=\dfrac{5}{9}W\left(J\right)\Rightarrow B.\dfrac{5}{9}W\left(J\right)\)
Câu này em nghĩ nên cho thêm đơn vị Jun ạ!
8/ \(T-mg\cos\alpha=m.a_{ht}=\dfrac{mv^2}{l}\)
\(\Leftrightarrow T=mg\cos\alpha+2mg\left(\cos\alpha-\cos\alpha_0\right)\)
\(\Leftrightarrow T=mg\left(3\cos\alpha-2\cos\alpha_0\right)\)
Lực căng cực đại khi vật ở vị trí thấp nhất
\(\Rightarrow\alpha=0\Rightarrow T_{max}=mg\left(3.1-2\cos60^0\right)=2mg\left(N\right)\)
Lực căng cực tiểu khi vật ở vị trí ban đầu
\(\Rightarrow\alpha=60^0\Rightarrow T_{min}=mg\left(3.\dfrac{1}{2}-2.\dfrac{1}{2}\right)=0,5mg\left(N\right)\)
\(\Rightarrow\dfrac{T_{max}}{T_{min}}=\dfrac{2}{0,5}=4\Rightarrow D.4\)
Chọn B