Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)
Do đó diện tích xq của hình nón là:
\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)
Đáp án C
mk nhầm câu c là 25f(x)
câu d là 24f(x)
mk nhầm nũa câu hỏi là cái f(x+2)-f(x) là bỏ nha
11.
Thay tọa độ vào coi cái nào thỏa mãn thôi, câu này chắc ko vấn đề
12.
Gọi cạnh của hình lập phương là x
\(\Rightarrow\) Đường chéo bằng \(x\sqrt{3}\)
\(\Rightarrow x\sqrt{3}=2\sqrt{3}a\Rightarrow x=2a\)
\(\Rightarrow S_{tp}=6x^2=24a^2\)
13.
\(R=\frac{x}{2}=a\sqrt{2}\Rightarrow V=\frac{4}{3}\pi R^3=\frac{8\sqrt{2}}{3}\pi a^3\)
(Bán kính mặt cầu nội tiếp lập phương bằng 1 nửa cạnh. Bán kính mặt cầu ngoại tiếp lập phương bằng \(\frac{x\sqrt{3}}{2}\) với x là cạnh)
14.
Phương trình hoành độ giao điểm: \(x^3-3x=x\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)
Diện tích:
\(S=\int\limits^0_{-2}\left(x^3-3x-x\right)dx+\int\limits^2_0\left(x-x^3+3x\right)dx=8\)
15.
\(v'\left(t\right)=a\left(t\right)=0\Rightarrow3t^2\left(2-t\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\)
Bảng biến thiên \(v\left(t\right)\)
Từ BBT ta thấy \(v\left(t\right)_{max}\) tại \(t=2\)
8.
\(\overrightarrow{AB}=\left(3;3;1\right)\Rightarrow\) đường thẳng AB nhận (3;3;1) là 1 vtcp
\(\overrightarrow{OB}=\left(4;1;1\right)\Rightarrow OH=d\left(O;AB\right)=\frac{\left|\left[\overrightarrow{OB};\overrightarrow{AB}\right]\right|}{\left|\overrightarrow{AB}\right|}=\frac{\sqrt{2^2+1^2+\left(-9\right)^2}}{\sqrt{3^2+3^2+1^2}}=\sqrt{\frac{86}{19}}\)
9.
\(\int\limits^3_2\frac{5x+12}{x^2+5x+6}dx=\int\limits^3_2\left(\frac{2}{x+2}+\frac{3}{x+3}\right)dx=\left(2ln\left(x+2\right)+3ln\left(x+3\right)\right)|^3_2\)
\(=3ln6-2ln4-ln5=-4ln2-ln5+3ln6\)
\(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-1\\c=3\end{matrix}\right.\) \(\Rightarrow S=...\)
10.
\(\Rightarrow I=log_a6=\frac{1}{log_6a}=\frac{1}{2}\)
Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!
Link đây: Cộng đồng học tập online | Học trực tuyến
1. Gọi I là tâm của mặt cầu cần tìm
Vì I thuộc d
=> I( a; -1; -a)
Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:
d(I; (P))=d(I;(Q))
<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)
\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)
=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3
=> Phương trình mặt cầu:
\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
đáp án C.
2. Gọi I là tâm mặt cầu: I(1; -1; 0)
Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M
=> IM vuông góc vs mặt phẳng (P)
=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)
=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M
1(x-0)+0(y+1)+0(z-0) =0<=> x=0
đáp án B
3.
\(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)
Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:
\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)
đáp án D
4.
pt <=> \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)
\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)
\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)
=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5
Đáp án A
Đáp án D.