K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)

Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4  = 2\)

b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b =  - 2,c = 2\)

Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b =  - 1,c = 7\)

Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 =  - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = 2,c =  - 20\)

Ta có \({a^2} + {b^2} - c = 1 + 4 + 20 = 25 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1;2)\) và có bán kính \(R = \sqrt {25}  = 5\)

b) Phương trình \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\) là phương trình dường tròn với tâm \(I( - 5; - 1)\) và bán kinh \(R = \sqrt {121}  = 11\)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a =  - 3,b =  - 2,c =  - 2\)

Ta có \({a^2} + {b^2} - c = 9 + 4 + 2 = 15 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I( - 3; - 2)\) và có bán kính \(R = \sqrt {15} \)

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn

6 tháng 3 2020

mỗi bài, mk làm một phần ví dụ cho cậu nhé

nó đối xứng với nhau qua pt đường thẳng đenta,

trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau 

lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1)  là điểm thuộc đường thẳng (d)

lấy A' đối xứng với A qua (đen ta) 

liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)

đồng thời giao điểm của  AA' với (đen ta) là trung điểm của  AA' 

dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)

từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4) 

vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)

áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0

gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)

mà I là trung điểm của AA' 

chắc chắn cậu sẽ dễ dàng suy ra điểm A'

mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')

NV
9 tháng 4 2021

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

9 tháng 4 2021

Câu 2 đâu pa

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;2} \right)\). Đường thẳng \(d\) đi qua điểm \(M\left( {0;2} \right)\) nhận \(\overrightarrow {IM}  = \left( {1;0} \right)\) làm vecto pháp tuyến có phương trình là \(x = 0\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C)

Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:

\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)