Trong các phát biểu sau về gluxit:

(1) Khác với g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Chọn C.

(a) Sai, Fructozơ không làm mất màu nước brom.

(b) Sai, Khi thay thế nhóm –OH của nhóm cacboxyl (-COOH) bằng –OR thì ta được phân tử este.

(c) Đúng.

(d) Đúng.

(e) Đúng.

(f) Sai, Phương pháp hiện đại để sản xuất CH3COOH là cho CH3OH tác dụng với CO.

(g) Đúng.

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

24 tháng 9 2017

(a) Đúng

(b) Đúng

(c) Sai

(d) Đúng

(e) Đúng

Đáp án C

26 tháng 1 2015

Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này: 

Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn  \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:

                                         \(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)

Không biết đúng không có gì sai góp ý nhé!!

a. pt S ở trạng thái dừng:

           \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0

đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:

            U=-\(\frac{Z^2_e}{r}\)

\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:

            \(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0

b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)

ta có :  \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)

  \(\rightarrow\)Hằng số Rydberg:

           Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)

  vạch màu lam:n=3 ; n'=4

           Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.10 m-1=109710 cm-1.

c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)

Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))

              =109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.

Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:

                  En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.

1 tháng 2 2015

a, Ta có:

Hai hàm sóng trực giao nhau khi  \(I=\int\psi_{1s}.\psi_{2s}d\psi=0\) \(\Leftrightarrow I=\iiint\psi_{1s}.\psi_{2s}dxdydz=0\)

Chuyển sang tọa độ cầu ta có:  \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.\sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)

\(\Rightarrow\)\(I=\frac{a^3_o}{4.\sqrt{2.\pi}}\int\limits^{\infty}_0\left(2-\frac{r}{a_o}\right).e^{-\frac{3.r}{2.a_o}}.r^2.\sin\theta dr\int\limits^{2\pi}_0d\varphi\int\limits^{\pi}_0d\theta\)

       \(=a^3_o.\sqrt{\frac{\pi}{2}}\)(.\(2.\int\limits^{\infty}_0r^2.e^{-\frac{3.r}{2.a_o}}dr-\frac{1}{a_o}.\int\limits^{\infty}_0r^3.e^{-\frac{3.r}{2.a_o}}dr\))

         \(=a_o.\sqrt{\frac{\pi}{2}}.\left(2.I_1-\frac{1}{a_o}.I_2\right)\)  

Tính \(I_1\):

Đặt \(r^2=u\)\(e^{-\frac{3r}{2a_o}}dr=dV\)

\(\Rightarrow\begin{cases}2.r.dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)    \(\Rightarrow I_1=-r^2.\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}+\frac{4.a_o}{3}.\int\limits^{\infty}_0r.e^{-\frac{3r}{2a_o}}dr\)\(=0+\frac{4a_o}{3}.I_{11}\)

Tính \(I_{11}\):

Đặt r=u; \(e^{-\frac{3r}{2a_o}}dr=dV\)\(\Rightarrow\begin{cases}dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)\(\Rightarrow I_{11}=0+\frac{2a_0}{3}.\int\limits^{\infty}_0e^{-\frac{3r}{2a_o}}dr=\frac{4a^2_o}{9}\)

\(\Rightarrow2.I_1=2.\frac{4a_o}{3}.\frac{4a_o^2}{9}=\frac{32a^3_o}{27}\)

Tính \(I_2\):

Đặt \(r^2=u;e^{-\frac{3r}{2a_o}}dr=dV\) \(\Rightarrow\)\(3r^2dr=du;-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\)

\(\Rightarrow I_2=0+2.a_o.\int\limits^{\infty}_0r^2.e^{-\frac{3r}{2a_o}}dr\)\(\Rightarrow\frac{1}{a_o}.I_2=2a_o.\frac{16a^3_o}{27}.\frac{1}{a_o}=\frac{32a^3_o}{27}\)

\(\Rightarrow I=a^3_o.\sqrt{\frac{\pi}{2}}.\left(\frac{32a^3_o}{27}-\frac{32a^3_o}{27}\right)=0\)

Vậy hai hàm sóng này trực giao với nhau.

b,

Xét hàm \(\Psi_{1s}\):

Hàm mật độ sác xuất là: \(D\left(r\right)=\Psi^2_{1s}=\frac{1}{\pi}.a^3_o.e^{-\frac{2r}{a_o}}\)

\(\Rightarrow D'\left(r\right)=-\frac{2.a_o^2}{\pi}.e^{-\frac{2r}{a_o}}=0\)

\(\Rightarrow\)Hàm đạt cực đại khi \(r\rightarrow o\) nên hàm sóng có dạng hình cầu.

Xét hàm \(\Psi_{2s}\):

Hàm mật độ sác xuất: \(D\left(r\right)=\Psi_{2s}^2=\frac{a^3_o}{32}.\left(2-\frac{r}{a_o}\right)^2.e^{-\frac{r}{a_0}}\)\(\Rightarrow D'\left(r\right)=\left(2-\frac{r}{a_o}\right).e^{-\frac{r}{a_o}}.\left(-4+\frac{r}{a_o}\right)=0\)

\(\Rightarrow r=2a_o\Rightarrow D\left(r\right)=0\)\(r=4a_o\Rightarrow D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)

Vậy hàm đạt cực đại khi \(r=4a_o\), tại \(D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)

 

                

 

hai hàm trực giao: I=\(\int\)\(\Psi\)*\(\Psi\)d\(\tau\)=0

Ta có: I=\(\int\limits^{ }_x\)\(\int\limits^{ }_y\)\(\int\limits^{ }_z\)\(\Psi\)*\(\Psi\)dxdydz=0

           =\(\int\limits^{ }_r\)\(\int\limits^{ }_{\theta}\)\(\int\limits^{ }_{\varphi}\)\(\Psi\)1s\(\Psi\)2sr2sin\(\theta\)drd\(\theta\)d\(\varphi\)

          =\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2sin\(\theta\)drd\(\theta\)d\(\varphi\)

          =C.\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr.\(\int\limits^{\pi}_0\)sin\(\theta\)\(\int\limits^{2\pi}_0\)d\(\varphi\)

 với C=\(\frac{1}{4\sqrt{2\pi}}\)a0-3

 Xét tích phân: J=\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr

 =\(\int\limits^{\infty}_0\)(2r2\(\frac{r^3}{a_0}\)).e-3r/a0dr

 =\(\int\limits^{\infty}_0\)(2r2\(\frac{r^3}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a0

  =\(\frac{-2a_0}{3}\).((2r2-\(\frac{r^3}{a_0}\))e-3r/a0\(-\)\(\int\)(4r-\(\frac{3r^2}{a_0}\))e-3r/adr)

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 - \(\int\)(4r-\(\frac{3r^2}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a)

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a\(\int\)(4 - \(\frac{6r}{a_0}\))e-3r/a0dr))

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0- \(\int\)(4 - \(\frac{6r}{a_0}\))\(\frac{-2a_0}{3}\).de-3r/a0))

 =\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\)e-3r/a0dr)))

=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\).\(\frac{-2a_0}{3}\)de-3r/a0)))

=\(\frac{-2a_0}{3}\)((((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 - 4.e-3r/a0))))

=\(\frac{-2a_0}{3}\)e-3r/a0.\(\frac{-r^3}{a_0}\)
=2/3.e-3r/a0.r3
Thế cận tích phân 0 và \(\infty\) 
           J= 0 
suy ra I=0. 
Vậy 2 hàm số trực giao
2 tháng 2 2015

Ta có:

Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)

Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)

Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:

\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)

Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa

Ta có:

\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)

Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)

\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)

\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)

\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))

\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)

\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)

\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)

1 tháng 2 2015

áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)

ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)

Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)

.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)

suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)

21 tháng 1 2015

Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx

Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc: 

P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)

a) x = 4,95 ÷ 5,05 nm

P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02

Tương tự với phần b, c ta tính được kết quả:

b) P= 0.0069

c)P=6,6.10-6


 

Ta có:Xác suất tìm thấy vi hạt là:

P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)

=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)

a)x=4,95\(\div\)5,05nm

Xác suất tìm thấy vi hạt là:

P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019

b)Xác suất tìm thấy vi hạt là:

P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069

c)Xác suất tìm thấy vi hạt là:

P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)

12 tháng 4 2016

quá khủng

1. axetilen( ankin), benzen( hidrocacbon mạch vòng), ruou etylic ( ancol), axit axetic( axit cacboxylic), glucozo(cacbohidrat), etyl axetat( este), etilen( anken)

2.

a, qùy tím, nước vôi trong, dd brom

b, quỳ tím, nước vôi trong, và bạc

c,quỳ tím, nước vôi trong, cuso4 khan, kmno4

d,quỳ tím, brom, cuo

e, brom,quỳ tím,na

g, Cu(OH)2, đốt.