Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu x, y thứ tự là chiều dài và chiều rộng của hình chữ nhật (x, y > 0). Khi đó xy = 48. Theo bất đẳng thức Cô-si, ta có :
. Vậy chu vi hình chữ nhật nhỏ nhất bằng (m) khi (m), tức là khi hình chữ nhật là hình vuông.
Gọi hai cạnh hình chữ nhật: \(x,y\left(x,y>0\right)\).
Do diện tích hình chữ nhật: \(xy=48\Rightarrow y=\dfrac{48}{x}\).
Chu vi hình chữ nhật là: \(2\left(x+y\right)=2\left(x+\dfrac{48}{x}\right)=\dfrac{2\left(x^2+48\right)}{x}\).
Xét hàm số: \(y=\dfrac{2\left(x^2+48\right)}{x}\) với \(x\in\left(0;+\infty\right)\).
\(y'\left(x\right)=\dfrac{2\left(x^2-48\right)}{x^2}\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=4\sqrt{3}\).
Bảng biến thiên:
TenAnh1
TenAnh1
A = (-4.32, -5.92)
A = (-4.32, -5.92)
A = (-4.32, -5.92)
B = (11.04, -5.92)
B = (11.04, -5.92)
B = (11.04, -5.92)
C = (-4.38, -5.98)
C = (-4.38, -5.98)
C = (-4.38, -5.98)
D = (10.98, -5.98)
D = (10.98, -5.98)
D = (10.98, -5.98)
Từ bảng biến thiên ta ta thấy giá trị nhỏ nhất của \(y\left(x\right)=16\sqrt{3}\) với \(x_{GTNN}=4\sqrt{3}\).
Suy ra hình chữ nhật có chu vi nhỏ nhất khi \(x=y=4\sqrt{3}\).
Lời giải:
Chọn điểm $I$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}=0\)
\(\Leftrightarrow (1-x_I, 2-y_I, 1-z_I)-2(2-x_I, -1-y_I, 3-z_I)=0\)
\(\Rightarrow \left\{\begin{matrix} 1-x_I-2(2-x_I)=0\\ 2-y_I-2(-1-y_I)=0\\ 1-z_I-2(3-z_I)=0\end{matrix}\right.\Rightarrow I(3,-4, 5)\)
Có:
\(MA^2-2MB^2=(\overrightarrow {MI}+\overrightarrow{IA})^2-2(\overrightarrow{MI}+\overrightarrow{IB})^2\)
\(=-MI^2+IA^2-2IB^2+2\overrightarrow{MI}(\overrightarrow{IA}-2\overrightarrow{IB})\)
\(=-MI^2+IA^2-2IB^2\)
Do đó để \(MA^2-2MB^2\) max thì \(MI^2\) min. Do đó $M$ là hình chiếu vuông góc của $I$ xuống mặt phẳng $Oxy$
Gọi d là đường thẳng đi qua $I$ và vuông góc với (Oxy)
Khi đó: \(d:\left\{\begin{matrix} x=3\\ y=-4\\ z=5+t\end{matrix}\right.\)
$M$ thuộc d và $(Oxy)$ thì ta có thể suy ra ngay đáp án D
3.
\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)
\(\Rightarrow y_{min}=y\left(1\right)=m-4\)
\(\Rightarrow m-4=0\Rightarrow m=4\)
4.
Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định
\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)
\(\Rightarrow m=\frac{41}{5}\)
Đáp án B
1.
\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến
\(m=y_{min}=y\left(0\right)=2\)
\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)
\(\Rightarrow M^2+m^2=\frac{41}{4}\)
2.
Hàm xác định trên \(\left[-2;2\right]\)
\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)
\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)
\(\Rightarrow N=-2;M=2\sqrt{2}\)
\(\Rightarrow M+2N=2\sqrt{2}-4\)
Câu 1:
\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:
\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)
\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)
\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)
\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)
\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)
\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)
\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)
Mà \(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)
Câu 2:
Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)
\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)
\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)
1/ \(f'\left(x\right)=\frac{3\sqrt{x^2+1}-\frac{x\left(3x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\frac{3\left(x^2+1\right)-3x^2-x}{\left(x^2+1\right)\sqrt{x^2+1}}=\frac{3-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
Hàm số đồng biến trên \(\left(-\infty;3\right)\) nghịch biến trên \(\left(3;+\infty\right)\)
\(\Rightarrow f\left(x\right)\) đạt GTLN tại \(x=3\)
\(f\left(x\right)_{max}=f\left(3\right)=\frac{10}{\sqrt{10}}=\sqrt{10}\)
2/ \(y'=\frac{\sqrt{x^2+2}-\frac{\left(x-1\right)x}{\sqrt{x^2+2}}}{x^2+2}=\frac{x^2+2-x^2+x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{x+2}{\left(x^2+2\right)\sqrt{x^2+2}}\)
\(f'\left(x\right)=0\Rightarrow x=-2\in\left[-3;0\right]\)
\(y\left(-3\right)=-\frac{4\sqrt{11}}{11}\) ; \(y\left(-2\right)=-\frac{\sqrt{6}}{2}\) ; \(y\left(0\right)=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}M=-\frac{\sqrt{2}}{2}\\N=-\frac{\sqrt{6}}{2}\end{matrix}\right.\) \(\Rightarrow MN=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}\)
Tất cả các đáp án đều sai
3/ \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\\\sqrt{x+1}>0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\) \(\forall x\Rightarrow N=0\) khi \(x=3\)
- Với \(0\le x< 3\Rightarrow f\left(x\right)=\left(3-x\right)\sqrt{x+1}\)
\(\Rightarrow f'\left(x\right)=-\sqrt{x+1}+\frac{\left(3-x\right)}{2\sqrt{x+1}}=\frac{-2\left(x+1\right)+3-x}{2\sqrt{x+1}}=\frac{-3x+1}{2\sqrt{x+1}}\)
\(f'\left(x\right)=0\Rightarrow x=\frac{1}{3}\)
- Với \(3< x\le4\Rightarrow f\left(x\right)=\left(x-3\right)\sqrt{x+1}\)
\(\Rightarrow f'\left(x\right)=\sqrt{x+1}+\frac{x-3}{2\sqrt{x+1}}=\frac{2\left(x+1\right)+x-3}{2\sqrt{x+1}}=\frac{3x-1}{2\sqrt{x+1}}>0\) \(\forall x>3\)
Ta có: \(f\left(0\right)=3\) ; \(f\left(\frac{1}{3}\right)=\frac{16\sqrt{3}}{9}\) ; \(f\left(4\right)=\sqrt{5}\)
\(\Rightarrow M=\frac{16\sqrt{3}}{9}\Rightarrow M+2N=\frac{16\sqrt{3}}{9}\)
Câu 2 hình như câu B mà người ta nói đạt GTLN . GTNN tại M , N nên là 0 x -2 =0
Nguyễn An: xin lỗi em chị trả lời hơi muộn.
Hướng đi của em hoàn toàn ổn và tự nhiên rồi, nhưng có 1 vài cái lưu ý là:
1. Điều kiện để PT(2) có 2 nghiệm pb là $m^2>0\Leftrightarrow m\neq 0$ chứ không phải $m>0$
2.
Đến đoạn $2\sqrt{m^2+m^8}+\sqrt{4m^2}=2(1+\sqrt{2})$
$\Leftrightarrow \sqrt{m^2+m^8}+|m|=1+\sqrt{2}$
$\Leftrightarrow \sqrt{t^2+t^8}-\sqrt{2}+t-1=0$ (đặt $|m|=t\geq 0$)
$\Leftrightarrow \frac{t^2+t^8-2}{\sqrt{t^2+t^8}+\sqrt{2}}+(t-1)=0$
$\Leftrightarrow (t-1)\left(\frac{t+1+t^7+t^6+...+1}{\sqrt{t^2+t^8}+\sqrt{2}}+1\right)=0$
Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0 với mọi $t\geq 0$
Do đó $t-1=0\Leftrightarrow |m|=t=1\Rightarrow m=\pm 1$ (thỏa mãn)
Thông thường những pt của mấy bài toán dạng này kiểu gì cũng ra nghiệm đẹp, nên dù thấy số ban đầu hơi xấu cũng đừng nản chí :v
1.
Hàm trùng phương có đúng 1 cực trị khi:
TH1: \(a=m=0\)
TH2: \(ab=-m>0\Leftrightarrow m< 0\)
\(\Rightarrow m\le0\)
Đáp án B
2.
\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)
Hàm số có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)
\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)
\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)
Ta có \(y'=3\left(x^2-m\right)\Rightarrow y'=0\Leftrightarrow x^2=m\)
Hàm số có 2 cực trị khi và chỉ khi \(m>0\). Khi đó tọa độ 2 điểm A, B là :
\(A\left(\sqrt{m}'-2m\sqrt{m}\right);B\left(-\sqrt{m};2m\sqrt{m}+2\right)\)
Suy ra \(\overrightarrow{AB}=\left(-2\sqrt{m};4m\sqrt{m}\right)\Rightarrow\overrightarrow{n}\left(2m;1\right)\) là vecto pháp tuyến của AB
Phương trình AB : 2mx + y -2 = 0
Suy ra \(d\left(I,AB\right)=\frac{\left|2m-1\right|}{\sqrt{1-4m^2}},AB=2\sqrt{m}.\sqrt{1+4m^2}\)
Do đó \(S_{\Delta IAB}=\frac{1}{2}.AB.d\left(I,AB\right)=\sqrt{m}\left|2m-1\right|\)
Mà \(S_{\Delta IAB}=\sqrt{18}\Rightarrow\sqrt{m}\left|2m-1\right|=\sqrt{18}\Rightarrow4m^3-4m^2+m-18=0\Leftrightarrow m=2\)
Vậy m = 2 là giá trị cần tìm
Đáp án là C
Giả sử hình chữ nhật có chiều dài và chiều rộng lần lượt là a, b(0<a, b<150), đơn vị: m.
Từ giả thiết, ta có a+b=150
Diện tích hình chữ nhật là S=a.b
Cách 1:
Áp dụng bất đẳng thức Cô – si, ta có
a b ≤ a + b 2 ⇔ a b ≤ 75 ⇔ a b = 5625 ⇔ S = 5625
Dấu bằng xảy ra a = b a + b = 150 ⇔ a = 75 b = 75
Hay max S= 5625 m 2
Cách 2:
Ta có a+b=150 <=> b=150-a
Khi đó S=a.b=a(150-a)= - a 2 + 150 a
Xét hàm số f a = - a 2 + 150 a 0 < a < 150
f ' a = - 2 a + 150 , f ' a = 0 ⇔ a = 75
Vậy max S= 5625 m 2