K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Ta có: SABCD = 2.0H.AB = 2.3.AB = 6AB

Mà SABCD = 48cm2

Suy ra 6AB = 48 => AB = 8(cm)

Mặt khác: 2OK.BC = SABCD => 2.4.BC = 48 => BC = 6(cm)

Chu vi hình bình hành ABCD là (8 + 6).2 = 28 (cm)

26 tháng 11 2016

hình có diện tích lớn nhất là hình vuông nha bạn :)

7 tháng 1 2018

Gọi x,y là kích thước của hình chữ nhật (x,y>0)

ta có: x2+y2=d2(đl pytago)

Từ (x-y)2>= 0 suy ra x2-2xy+y2>=0 suy ra x2+y2>= 2xy

Ta có xy<= d2/2, không đổi.

dấu ''='' xảy ra <=> x=y

suy ra ABCD là hình vuông

Vậy trong tất cả các hình chữ nhật có chiều dài đường chéo d không đổi thì hình vuông có diện tích lớn nhất và bằng d2/2

10 tháng 2 2019
 
 
 
21 tháng 4 2017

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI

Hướng dẫn giải:

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI



14 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, khoảng cách từ O đến cạnh AB là OH = 2cm , đến cạnh BC là OK = 3cm

* Kéo dài OH cắt cạnh CD tại H'.

Ta có OH ⊥ BC

⇒ OH' ⊥ CD và OH' = 2cm

Suy ra HH' bằng đường cao của hình bình hành.

S A B C D  = HH'.AB ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Kéo dài OK cắt AD tại K'.

Ta có: OK ⊥ BC ⇒ OK' ⊥ CD và OK' = 3 (cm)

Suy ra KK' là đường cao của hình bình hành.

S A B C D  = KK'.AB ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Chu vi của hình bình hành ABCD là (6 + 4).2 = 20 (cm).