Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có y = 0 không phải là nghiệm, còn y = -2 là nghiệm của BPT.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, +) Thay y = -2 vào phương trình trên ta có :
( -2 + 1 )2 = 2 . ( -2 ) + 5
1 = 1
Vậy y = -2 thỏa mãn phương trình trên
+) Thay y = 1 vào phương trình trên , ta có :
( 1 + 1)2 = 2 . 1 + 5
4 = 7
Vậy y = 1 thỏa mãn phương trình trên
b, +) Thay x =-3 vaò phương trình trên , ta có :
( -3 + 2 )2 = 4 . ( -3 ) + 5
2 = -7
Vậy x = -3 không thỏa mãn phuong trình trên
+) Thay x = 1 vào phương trình trên , ta có :
( 1 + 2 )2 = 4 . 1 + 5
9 = 9
Vậy x = 1 thỏa mãn phương trình trên
c, +) Thay t = -1 vào phương trình , ta có :
[ 2 . ( -1 ) + 1 ]2 = 4 . ( -1 ) + 5
1 = 1
Vậy t = -1 thỏa mãn phương trình trên
+) Thay t = 3 vào phương trình trên , ta có :
( 2 . 3 + 1 )2 = 4 . 3 + 5
49 = 17
Vậy t = 3 không thỏa mãn phương trình trên
d, +) Thay z = -2 vào phương trình trên , ta có :
( -2 + 3 )2 = 6 . ( -2 ) + 10
1 = -2
Vậy z = -2 không thỏa mãn phương trình trên
+) Thay z = 1 vào phương trình trên , ta có :
( 1 + 3 )2 = 6 . 1 + 10
16 = 16
Vậy z =1 thỏa mãn phương trình trên
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để cho \(x=-3\) là nghiệm của phương trình \(f\left(x,y\right)=0\) điều kiện là :
\(\left(-6-3y+7\right)\left(-9+2y-1\right)=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}
B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm
Câu 2:
\(\left(y-2\right)^2=y+4\)
\(\Leftrightarrow y^2-4y+4-y-4=0\)
\(\Leftrightarrow y\left(y-5\right)=0\)
=>y=0 hoặc y=5
![](https://rs.olm.vn/images/avt/0.png?1311)
VT: \(\left(t+2\right)^2\) = \(\left(0+2\right)^2\) = 4
VP: 3t + 4 = 3.0 + 4 = 4
VT = VP nên t = 0 là nghiệm của phương trình
@. Với t = 1, ta có:
VT: \(\left(t+2\right)^2\) = \(\left(1+2\right)^2\) = 9
VP: 3t + 4 = 3.1 + 4 = 7
VT ≠≠ VP nên t = 1 không phải là nghiệm của phương trình.
Lần lượt thay các giá trị của t vào hai vế của phương trình ta được:
- Với t = -1
Vế trái = (-1 + 2)2 = 1
Vế phải = 3(-1) + 4 = 1
Vế trái = Vế phải nên t = -1 là nghiệm.
- Với t = 0
Vế trái = (0 + 2)2 = 4
Vế phải = 3.0 + 4 = 4
Vế trái = Vế phải nên t = 0 là nghiệm.
- Với t = 1
Vế trái = (1 + 2)2 = 9
Vế phải = 3.1 + 4 = 7
Vế trái ≠ Vế phải nên t = 1 không là nghiệm của phương trình.
![](https://rs.olm.vn/images/avt/0.png?1311)
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
Hình như không có số nào hết bạn ơi
Thay y = -1 ta được \(\left(-1+1\right)^2=-3+4\)( loại )
Với y = 0 ta được \(\left(0+1\right)^2=0+4\)( loại )
Với y = 1 ta được \(\left(1+1\right)^2=3+4\)( loại )