Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3t^2 -t+ 6t -2 - 3t^2 - 3t -2t + 7
= (3t^2 -3t^2) +( 6t-t-3t-2t) +(7-2)
= 0+0+5 =5
Vậy A ko phụ thuộc vào giá trị của biến.
Những bài kiểu này bạn cứ nhân ra mà nếu kết quả ra 1 số thực thi ko phụ thuộc vào biến.
Chúc bạn học tốt.
Thay t = 3 vào phương trình, ta được:
\(1-a-3=2a\left(a+2\right)\)
\(\Leftrightarrow-2-a=2a^2+4a\)
\(\Leftrightarrow2a^2+5a+2=0\)
Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{-5+3}{4}=\frac{-1}{2}\\a=\frac{-5-3}{4}=-2\end{cases}}\)
Bài 1:
a.
Thay x = 1 là nghiệm của pt, ta được:
\(1^3+a.1^2-4.1-4=0\)
\(\Leftrightarrow1+a-4-4=0\)
\(\Leftrightarrow1+a-8=0\)
\(\Leftrightarrow a-7=0\)
\(\Leftrightarrow a=7\)
b.
Với a = 7 ta được:
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+8x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+8x+4=0\end{matrix}\right.\)
Ta có:
\(x^2+8x+4=x^2+2.x.4+4^2-12\)
\(=\left(x+4\right)^2-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
Vậy. \(\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
a) Để cho \(x=-3\) là nghiệm của phương trình \(f\left(x,y\right)=0\) điều kiện là :
\(\left(-6-3y+7\right)\left(-9+2y-1\right)=0\)
a) Khi \(m=-4\) phương trình trở thành:
\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)
\(\Leftrightarrow0.x^2=0\)
Đúng với mọi x.
b) Khi \(m=-1\) phương trình trở thành:
\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)
\(\Leftrightarrow0.x^2=3\)
Phương trình vô nghiệm.
c) Khi \(m=-2\) phương trình trở thành:
\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)
\(\Leftrightarrow-2.x^2=2\)
\(\Leftrightarrow x^2=-1\)
Phương trình này cũng vô nghiệm.
Khi \(m=-3\) phương trình trở thành:
\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)
\(\Leftrightarrow-2x^2=1\)
\(\Leftrightarrow x^2=-\dfrac{1}{2}\)
Phương trình cũng vô nghiệm.
d) Khi \(m=0\) phương trình trở thành:
\(\left[0^2+5.0+4\right]x^2=0+4\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
Phương trình có hai nghiệm là \(x=1,x=-1\).
VT: \(\left(t+2\right)^2\) = \(\left(0+2\right)^2\) = 4
VP: 3t + 4 = 3.0 + 4 = 4
VT = VP nên t = 0 là nghiệm của phương trình
@. Với t = 1, ta có:
VT: \(\left(t+2\right)^2\) = \(\left(1+2\right)^2\) = 9
VP: 3t + 4 = 3.1 + 4 = 7
VT ≠≠ VP nên t = 1 không phải là nghiệm của phương trình.
Lần lượt thay các giá trị của t vào hai vế của phương trình ta được:
- Với t = -1
Vế trái = (-1 + 2)2 = 1
Vế phải = 3(-1) + 4 = 1
Vế trái = Vế phải nên t = -1 là nghiệm.
- Với t = 0
Vế trái = (0 + 2)2 = 4
Vế phải = 3.0 + 4 = 4
Vế trái = Vế phải nên t = 0 là nghiệm.
- Với t = 1
Vế trái = (1 + 2)2 = 9
Vế phải = 3.1 + 4 = 7
Vế trái ≠ Vế phải nên t = 1 không là nghiệm của phương trình.