Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=4 vào \(y=f\left(x\right)=\sqrt{x}\), ta được
\(f\left(4\right)=\sqrt{4}=2\)
=>A(4;2) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Thay \(x=2\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được;
\(f\left(2\right)=\sqrt{2}>1\)
=>B(2;1) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Thay \(x=8\) vào \(y=\sqrt{x}\), ta được:
\(y=\sqrt{8}=2\sqrt{2}\)
=>\(C\left(8;2\sqrt{2}\right)\) thuộc đồ thị hàm số \(y=\sqrt{x}\)
Thay \(x=4-2\sqrt{3}\) vào \(y=\sqrt{x}\), ta được:
\(y=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1< >1-\sqrt{3}\)
=>\(D\left(4-2\sqrt{3};1-\sqrt{3}\right)\) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Thay \(x=6+2\sqrt{5}\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được:
\(f\left(6+2\sqrt{5}\right)=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)
vậy: \(E\left(6+2\sqrt{5};1+\sqrt{5}\right)\) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Câu 1:
\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)
\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)
\(\Leftrightarrow x=-2013\)
Câu 2:
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
\(B=3a^2-6a+2017=3a^2-6a+3+2014\)
\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(a=1\)
Lại có \(a=b=c\Rightarrow a=b=c=1\)
Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)
Câu 5:
\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)
Với \(n=1;n=2\) (*) đúng
Giả sử (*) đúng với n=k khi đó (*) thành:
\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)
Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)
Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có:
\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)
Đẳng thức cần chứng minh tương đương với:
\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)
\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)
\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)
Theo nguyên lí quy nạp ta có Đpcm
Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(t=n^2+3n\) thì ta có:
\(A=t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)
A máy bị lỗi nhé, CN = \(2\)\(\sqrt{3}\) nha!!! Giúp mình với!!!
Gọi các góc trong tứ giác đó lần lượt là a,b,c,d (a,b,c,d >0). Trong đó, d là góc thứ 4 của tứ giác.
Theo bài ta có : ( a + b + c ) - d = 220 ( độ ) (1)
Mà : a + b + c + d = 360 ( độ ) (2)
Trừ vế (2) cho (1) ta được : a + b + c + d - [ ( a + b + c ) - d ] = 360 - 220 ( độ )
=> 2d = 140 ( độ )
=> d = 70 độ hay : góc thứ tư của tứ giác bằng 70 độ.
Chúc bạn hok tốt !!