Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện : \(\dfrac{\pi}{2}\) < α < \(\pi\) (1)
\(\sin^2\dfrac{\alpha}{2}+\cos^2\dfrac{\alpha}{2}=1\)
⇔ \(\left(\dfrac{2}{\sqrt{5}}\right)^2+\cos^2\dfrac{\alpha}{2}=1\)
⇒ \(\cos\dfrac{\alpha}{2}=\pm\dfrac{1}{\sqrt{5}}\)
Do (1) nên ta có \(\dfrac{\pi}{4}< \dfrac{\alpha}{2}< \dfrac{\pi}{2}\): \(\cos\dfrac{\alpha}{2}>0\) ⇒ \(\cos\dfrac{\alpha}{2}=\dfrac{1}{\sqrt{5}}\) ⇒ \(\tan\dfrac{\alpha}{2}=\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}}=\dfrac{\dfrac{2}{\sqrt{5}}}{\dfrac{1}{\sqrt{5}}}=2\)
Khi đó ta có:
A = \(\dfrac{\tan\dfrac{\alpha}{2}-\tan\dfrac{\pi}{4}}{1+\tan\dfrac{\alpha}{2}.\tan\dfrac{\pi}{4}}\) = \(\dfrac{2-1}{1+2.1}\) =\(\dfrac{1}{3}\)
VẬY..............................
ta có \(sin^2a+cos^2a=1\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\sqrt{1-\left(\dfrac{-\sqrt{5}}{3}\right)^2}=\pm\dfrac{2}{3}\)
vì \(\Pi< a< \dfrac{3\Pi}{2}\Rightarrow sina< 0\) \(\Rightarrow sina=\dfrac{-2}{3}\)
lại có \(tana=\dfrac{sina}{cosa}=\dfrac{\dfrac{-2}{3}}{\dfrac{-\sqrt{5}}{3}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
Vì \(\pi< a< \dfrac{3\pi}{2}\) nên \(\sin a< 0\) và \(\tan a>0\)
Và \(\cos a=-\dfrac{\sqrt{5}}{3}\) nên \(\sin a=-\dfrac{2}{3}\)
Vậy \(\tan a=\dfrac{2}{\sqrt{5}}\)
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).
b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).
a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0
sinα =
cotα = ; tanα =
b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0
cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141
tanα ≈ 0,9802; cotα ≈ 1,0202.
c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0
cosα = ≈ -0,4229.
sinα =
cotα = -
d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0
Ta có: tanα =
cosα =