Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=x+2y\Rightarrow x=S-2y\)
Xét 2 trường hợp :
TH1: \(x^2+y^2>1\)từ giả thiết \(\Rightarrow x^2+y^2\le x+y\Leftrightarrow\left(S-2y\right)^2+y^2\le S-y\Rightarrow5y^2-\left(4S-1\right)y+S^2-S\le0\left(1\right)\)
Coi (1) là bất pt bậc 2 đối với ẩn y
\(\Rightarrow\Delta=\left(4S-1\right)^2-20\left(S^2-S\right)\ge0\Rightarrow4S^2-12S-1\le0\Rightarrow S\le\frac{3+\sqrt{10}}{2}\)
Đẳng thức xảy ra khi \(x=\frac{5+\sqrt{10}}{2}\) thỏa mãn \(x^2+y^2>1\)
Vậy \(S_{m\text{ax}}=\frac{3+\sqrt{10}}{2}\)
TH2: Nếu \(x^2+y^2< 1\Rightarrow x+y\le x^2+y^2\)\(\Rightarrow S=x+2y\le x^2+y^2+y< 1+1=2\Rightarrow S< \frac{3+\sqrt{10}}{2}\)
Vậy S lớn nhất là \(\frac{3+\sqrt{10}}{2}\)khi \(x=\frac{5+2\sqrt{10}}{10};y=\frac{5+2\sqrt{10}}{10}\)
TH 1: \(x^2+y^2< 1\)
\(\Rightarrow\hept{\begin{cases}|x|< 1\\|y|< 1\end{cases}}\)
\(\Rightarrow S=x+2y\le\sqrt{2\left(x^2+y^2\right)}+y< 1+\sqrt{2}\left(1\right)\)
TH 2: \(x^2+y^2>1\)
\(\Rightarrow x^2-x+y^2-y\le0\)
\(\Leftrightarrow\left(S-2y\right)^2-\left(S-2y\right)+y^2-y\le0\)
\(\Leftrightarrow5y^2+\left(1-4S\right)y+S^2-S\le0\)
\(\Rightarrow\Delta=\left(1-4S\right)^2-4.5.\left(S^2-S\right)\ge0\)
\(\Leftrightarrow S\le\frac{5+\sqrt{10}}{2}\left(2\right)\)
Từ (1) và (2) suy ra được GTLN của S
PS: S là đặt cho nó gọn nhé
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
x^2-xy+y^2=x^2.y^2+3
⇔x²-xy+y²-x²y²=3
⇔Nghiệm ko thỏa mãn
Do vai trò của x,y bình đẳng như nhau,giả sử \(x\ge y\),khi đó:
\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
\(\Rightarrow7\left(x^2+y^2\right)=25\left(x+y\right)\)
\(\Rightarrow7x^2+7y^2=25x+25y\)
\(\Rightarrow7x^2-25x=25y-7y^2\)
\(\Rightarrow x\left(7x-25\right)=y\left(25-7y\right)\)
\(\Rightarrow7x-25\)và \(25-7y\)cùng dấu vì \(x,y\inℕ\)
Nếu \(\hept{\begin{cases}7x+25< 0\\25-7y< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 4\\y< 4\end{cases}}\)(trái với giả sử)
Nếu \(\hept{\begin{cases}7x-25\ge0\\25-7y\ge0\end{cases}}\)
\(\Rightarrow x\ge4,y< 4\)
Thử y là các số tự nhiên từ 0 đến 3 ta được \(x=4,y=3\)
Vậy các cặp số (x,y) cần tìm là:\(\left(3;4\right)\)và các hoán vị của chúng
Tìm k là số các cặp số thực (x;y) khác 0 thõa mãn:
\(\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y=0\)
MÌnh nghĩ thế này ko bt đúng ko
Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)
Dấu = xảy ra khi x=y=1
Vậy (x;y)=(1;1)
Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
Áp dụng BĐt cô-si , ta có
\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)
Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)
Dấu = xảy ra <=> x=y=1
^_^
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
Mình sửa đề như thế này không biết có đúng không:
"Trong các cặp số thực (x;y) thỏa mãn: \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\).
Hãy tìm cặp số có tổng x+2y lớn nhất."
Xét \(x^2+y^2>1\): (*) Khi đó phải có: \(x^2-x+y^2-y\le0\Leftrightarrow x^2+y^2\le x+y\). Áp dụng bất đẳng thức AM - GM ta có: \(x^2+\frac{7+2\sqrt{10}}{20}=x^2+\left(\frac{5+\sqrt{10}}{10}\right)^2\ge x.\frac{5+\sqrt{10}}{5}\); \(y^2+\frac{13+4\sqrt{10}}{20}=y^2+\left(\frac{5+2\sqrt{10}}{10}\right)^2\ge y.\frac{5+2\sqrt{10}}{5}\). Do đó: \(x^2+y^2+\frac{10+3\sqrt{10}}{10}\ge x.\frac{5+\sqrt{10}}{5}+y.\frac{5+2\sqrt{10}}{5}\) \(\Rightarrow x+y+\frac{10+3\sqrt{10}}{10}\ge x.\frac{5+\sqrt{10}}{5}+y.\frac{5+2\sqrt{10}}{5}\Leftrightarrow\frac{\sqrt{10}}{5}x+\frac{2\sqrt{10}}{5}y\le\frac{10+3\sqrt{10}}{10}\Leftrightarrow x+2y\le\frac{3+\sqrt{10}}{2}\). Đẳng thức xảy ra khi và chỉ khi \(x=\frac{5+\sqrt{10}}{5};y=\frac{5+2\sqrt{10}}{5}\) (thỏa mãn (*)). +) Nếu \(x^2+y^2< 1\Rightarrow x,y< 1\Rightarrow x+2y< 3< \frac{3+\sqrt{10}}{2}\). So sánh hai trường hợp, ta có bộ số (x, y) để x + 2y đạt max là \(x=\frac{5+\sqrt{10}}{5};y=\frac{5+2\sqrt{10}}{5}\).