Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
\(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{\left(2^2\cdot7\right)^{15}\cdot3^{17}}{\left(2^2\cdot3\cdot7\right)^{16}}=\frac{2^{30}\cdot7^{15}\cdot3^{17}}{2^{32}\cdot3^{16}\cdot7^{16}}=\frac{3}{2^2\cdot7}=\frac{3}{4\cdot7}=\frac{3}{28}\)
Bài 2 : Bài giải
\(\frac{3^6\cdot21^{12}}{175^9\cdot7^3}=\frac{3^6\cdot\left(3\cdot7\right)^{12}}{\left(5^2\cdot7\right)^9\cdot7^3}=\frac{3^6\cdot3^{12}\cdot7^{12}}{5^{18}\cdot7^9\cdot7^3}=\frac{3^{18}\cdot7^{12}}{5^{18}\cdot7^{12}}=\frac{3^{18}}{5^{18}}\)
\(\frac{3^{10}\cdot6^7\cdot4}{10^9\cdot5^8}=\frac{3^{10}\cdot\left(2\cdot3\right)^7\cdot2^2}{\left(2\cdot5\right)^9\cdot5^8}=\frac{3^{10}\cdot2^7\cdot3^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\frac{3^{17}\cdot2^9}{2^9\cdot5^{17}}=\frac{3^{17}}{5^{17}}\)
Ta có : \(3^{17}\cdot5^{18}=3^{17}\cdot5^{17}\cdot5=\left(3\cdot5\right)^{17}\cdot5=15^{17}\cdot5\)
\(3^{18}\cdot5^{17}=3\cdot3^{17}\cdot5^{17}=3\cdot\left(3\cdot5\right)^{17}=3\cdot15^{17}\)
\(\text{ Vì }5\cdot15^{17}>3\cdot15^{17}\text{ }\Rightarrow\text{ }3^{17}\cdot5^{18}>3^{18}\cdot5^{17}\text{ }\Rightarrow\text{ }\frac{3^{18}}{5^{18}}< \frac{3^{17}}{5^{17}}\)
\(a\)) \(\left(4^2.4^3\right):2^{10}\)
\(=4^5:2^{10}\)
\(=\left(2^2\right)^5:2^{10}\)
\(=2^{10}:2^{10}\)
\(=1\)
\(b\)) \(\left(0,6\right)^5:\left(0,2\right)^6\)
\(=\left(\frac{3}{5}\right)^5:\left(\frac{1}{5}\right)^6\)
\(=\frac{3^5}{5^5}:\frac{1^6}{5^6}\)
\(=\frac{3^5}{5^5}.5^6\)
\(=\frac{3^5.5^6}{5^5}\)
\(=3^5.5\)
\(=243.5\)
\(=1215\)
\(c\)) \(\left(2^7.9^3\right):\left(6^5.8^2\right)\)
\(=\left[2^7.\left(3^2\right)^3\right]:\left[\left(2.3\right)^5.\left(2^4\right)^2\right]\)
\(=\left(2^7.3^6\right):\left[2^5.3^5.2^8\right]\)
\(=\left(2^7.3^6\right).\left(\frac{1}{2^5.3^5.2^8}\right)\)
\(=\frac{2^7.3^6.1}{\left(2^5.2^8\right).3^5}\)
\(=\frac{2^7.3^6}{2^{13}.3^5}\)
\(=\frac{3}{2^6}\)
\(=\frac{3}{64}\)