Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tròn nói: Tớ biết cách tìm được tất cả số x để 2x2 + x = 0.
Vuông thắc mắc: Tròn làm như thế nào nhỉ?
\(2{x^2} + x = 0 \Leftrightarrow x\left( {2x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{2x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \dfrac{{ - 1}}{2}}\end{array}} \right.\)
Vậy \(x = 0;x = \dfrac{{ - 1}}{2}\)
\(\frac{-x^6}{125}-\frac{y^3}{64}\)
\(=\frac{-\left(x^2\right)^3}{5^3}-\frac{y^3}{4^3}\)
\(=\left(\frac{-x^2}{5}\right)^3-\left(\frac{y}{4}\right)^3\)
\(=\left(\frac{-x^2}{5}-\frac{y}{4}\right)\cdot\left(\frac{x^4}{25}-\frac{x^2y}{20}+\frac{y^2}{16}\right)\)
Tham khảo nhé~
\(a.9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)
\(b.\left(2x+y\right)^2-1=\left(2x+y-1\right)\left(2x+y+1\right)\)
\(c.\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left[\left(x+y+z\right)+\left(x-y-z\right)\right]\left[\left(x+y+z\right)\right]-\left(x-y-z\right)\\ =2x.\left(2y+2z\right)\)
a) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)
b) \(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y+1\right)\left(2x+y-1\right)\)
c) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left(x+y+z+x-y-z\right)\left(x+y+z-x+y+z\right)\)
\(=2x\left(2y+2z\right)\)
mk lm lun nhe
=x2.[x4-x2+2x+2]
=x2.[x2[x2-1]+2[x+1] ]
=x2.[x2[x-1].[x+1]+2[x+1] ]
x2[x+1].[x3-x2+2]
\(x^3-9x^2+27x-27\)
\(=x^3-3x^2.3+3.x.3^2-3^3\)
\(=\left(x-3\right)^3\)
\(27x^6-y^3\)
\(=\left(3x^2\right)^3-y^3\)
\(=\left(3x^2-y\right)\left[\left(3x^2\right)^2+3x^2y+y^2\right]\)
\(=\left(3x^2-y\right)\left(9x^4+3x^2y+y^2\right)\)
Tròn đã làm bằng cách:
\(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3\)
\(=\left(x^2+y^2\right)\left[\left(x^2\right)^2-x^2\cdot y^2+\left(y^2\right)^2\right]\)
\(=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
\({x^6} + {y^6} = {\left( {{x^2}} \right)^3} + {\left( {{y^2}} \right)^3} = \left( {{x^2} + {y^2}} \right)\left[ {{{\left( {{x^2}} \right)}^2} - {x^2}.{y^2} + {{\left( {{y^2}} \right)}^2}} \right] = \left( {{x^2} + {y^2}} \right)\left( {{x^4} - {x^2}{y^2} + {y^4}} \right)\)