Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) x - 5 \(\in\)B ( 6 )
\(\Rightarrow\)x - 5 \(\in\){ 0 ; 6 ; 12 ; 18 ; 24 ; 30 ; 36 ; 42 ; 48 ; ..... }
\(\Rightarrow\)x \(\in\){ 5 ; 11 ; 17 ; 23 ; 29 ; 35 ; 41 ; 47 ; 53 ; .... }
b ) x - 1 \(⋮\)4
\(\Rightarrow\)x - 1 \(\in\)B ( 4 )
\(\Rightarrow\)x - 1 \(\in\){ 0 ; 4 ; 8 ; 12 ; 16 ; 20 ; 24 ; 28 ; 32 ; 36 ; 40 ; ..... }
\(\Rightarrow\)x \(\in\){ 1 ; 5 ; 9 ; 13 ; 17 ; 21 ; 25 ; 29 ; 33 ; 37 ; 41 ; .... }
Ta có công thức: \(ab=\left(a,b\right).\left[a,b\right]\).
Áp dụng ta được:
Có \(120.200=24000\), \(BCNN\left(120,200\right)=600\)
suy ra \(ƯCLN\left(120,200\right)=\frac{24000}{600}=40\).
Sử dụng mối quan hệ : a.b = (a, b).[a, b]
với (a, b) là UCLN(a, b) và [a, b] là BCNN(a, b)
có thể phải cần thêm ĐK nữa để giải.
Gọi số cần tìm là a, ta có :
a chia 7 dư 5 => a = 7k + 5 = 7k + 4 + 1 chia 4 dư 1 (k thuộc N)
a chia 13 dư 4 => a = 14m + 4 = 14m + 3 + 1 chia 3 dư 1 (m thuộc N)
Vậy a - 1 thuộc BC (3, 4)
3 = 3 ; 4 = 22
BCNN (3, 4) = 3.22 = 12
a - 1 thuộc BC (3, 4) = B (12) = {0 ; 12 ; 24 ; ... ; 996 ; 1008 ; 1020 ; ...}
=> a thuộc {1 ; 13 ; 25 ; ... ; 997 ; 1009 ; 1021 ; ...}
Vì a là số tự nhiên có 4 chữ số nhỏ nhất nên a = 1009
Vậy số cần tìm là 1009
Từ trang 1 đến trang 9 ta dùng 9 chữ số
Từ trang 10 đến trang 99 là 90 số = 90 . 2 = 180
Từ 100 đến 185 có 86 số và ta dùng : 86 . 3 = 258
Bạn Tâm phải việt số chữ số là :
9 + 180 + 358 = 547 ( chữ số )
Đáp số : 547 chữ số
2 câu hỏi kia mình ko bt
Đoạn đầu tớ thừa biết, còn đoạn sau không biết cách trình bày.
Đậu má chúng mày không giải thì tao làm sao chép được fuckkkkkkkkkkkkkk
Đjt mọe m ngta đéo rảnh để lm cho m,tự lm đê ,nghĩ đi =) có não cơ mà
\(A=\dfrac{31\cdot\left(31^{12}-1\right)}{31\left(31^{13}+1\right)}=\dfrac{31^{13}+1-32}{31\left(31^{13}+1\right)}=\dfrac{1}{31}-\dfrac{32}{31^{14}+31}\)
\(B=\dfrac{31\left(31^{13}-1\right)}{31\left(31^{14}+1\right)}=\dfrac{1}{31}-\dfrac{32}{31^{15}+31}\)
Dễ thấy \(31^{14}+31< 31^{15}+31\Rightarrow\dfrac{32}{31^{14}+31}>\dfrac{32}{31^{15}+31}\\ \Rightarrow\dfrac{1}{31}-\dfrac{32}{31^{14}+31}< \dfrac{1}{31}-\dfrac{32}{31^{15}+31}\)
Vậy A < B
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
Giúp mình nha nha nha
60 = 5 . 3 . 22
280 = 5 . 7 . 23
=> ƯCLN ( 60 ; 280 ) = 5 . 22 = 20