Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = \(\frac{a^2}{1bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3++b^3+c^3}{abc}\)
Xét phần tử ta có
a3 + b3 + c3
= a3 + b3 + 3ab(a + b) + c3 - 3ab(a + b)
= (a + b)3 + c3 - 3ab(a + b)
= (a + b + c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b)
= - 3ab(-c)
= 3abc
Thế vào tìm được A = 3
\(\frac{x^4-5x+4}{x^2-2}=5\left(x-1\right)\)
\(\Leftrightarrow\frac{x^4-5x+4}{x^2-2}\left(x^2-2\right)=5\left(x-1\right)\left(x^2-2\right)\)
\(\Leftrightarrow x^4-5x+4=5\left(x-1\right)\left(x^2-2\right)\)
\(\Rightarrow\hept{\begin{cases}x=\pm1\\x=2\\x=3\end{cases}}\)
P/s: ko chắc
ĐKXĐ : X2 \(\ne\)2
Ta có: \(\frac{x^4-5x+4}{x^2-2}\)= \(5\left(x-1\right)\)\(\Leftrightarrow\frac{\left(x-1\right)\left(x^3+x^2+x-4\right)}{x^2-2}=5\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^3+x^2+x-4}{x^2-2}-5\right)\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\frac{x^3+x^2+x-4}{x^2-2}-5=0\end{cases}}\)
\(+x-1=0\Rightarrow x=1\)
+)\(\frac{x^3+x^2+x-4}{x^2-2}-5=0\Leftrightarrow x^3+x^2+x-4-5x^2+10=0\)
\(\Leftrightarrow x^3-4x^2+x+6=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x-3\right)=0\)\(\Leftrightarrow x=2\)hoặc \(x=3\)
hoặc x=-1
Bạn tự kết luận nhé..
Bài làm:
Δ ABC vuông tại A?
Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)
=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)
=> \(AB=4k\)
Từ đây ta có thể dễ dàng tính được:
\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)
\(sin^2b+cos^2b=1\)
\(\left(\frac{3}{5}\right)^2+cos^2b=1\)
\(\frac{9}{25}+cos^2b=1\)
\(cos^2b=\frac{16}{25}\)
\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)
\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)
\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(M=ab+\frac{1}{a^2}+\frac{1}{b^2}\ge ab+\frac{2}{ab}\ge2\sqrt{2}\)
Ta có:
\(E\: =x^2+\frac{2x}{y}+\frac{1}{y^2}+y^2+\frac{2y}{x}+\frac{1}{x^2}=\left(x^2+y^2\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow E\ge4+4+\frac{1}{x^2}+\frac{1}{y^2}=8+\frac{x^2+y^2}{x^2y^2}\)
Do: \(4=x^2+y^2\ge2xy\Rightarrow xy\le2\Rightarrow x^2y^2\le4\Rightarrow\frac{4}{x^2y^2}\ge1\)
\(\Rightarrow E\ge8+1=9\)
Dấu bằng xảy ra khi x=y=\(\sqrt{2}\)
\(x_1+x_2=2\\x_1.x_2=2m-1 \)
\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\infty\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}=4\)
\(\approx\frac{x_1+x_2}{x_1x_2}+\frac{2}{\sqrt{2m-1}}=4\)
\(\approx\frac{2}{2m-1}+\frac{2}{\sqrt{2m-1}}=4\)
\(\approx\frac{1}{2m-1}+\frac{1}{\sqrt{2m-1}}=2\)
\(\Rightarrow m=1\)
\(\frac{9.42}{14.27}=\frac{3.3.2.3.7}{7.2.3.3.3}=\frac{3^3.2.7}{3^3.2.7}=1\)
9x42/14x27=9x14x3/14x9x3=1