K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

Đáp án B

Tần số góc của dao động ω = k m = 100 0 , 2 = 10 5 rad/s → T = 0,281 s.

+ Độ biến dạng của lò xo tại vị trí cân bằng Δ l 0 = m g k = 0 , 1.10 100 = 2 cm

→ Kéo vật xuống vị trí lò xo giãn 6 cm rồi thả nhẹ → lò xo sẽ dao động với biên độ A = 6 – 2 = 4 cm.

+ Với E d   =   E d h   ↔   E   –   E t   =   E d h → 1 2 k A 2 − 1 2 k x 2 = 1 2 k Δ l 0 + x 2 → 2 x 2 + 2 Δ l 0 x + Δ l 0 2 − A 2 = 0

Thay các giá trị đã biết vào phương trình, ta thu được x 2 + 2 x – 6 = 0 → hoặc x = 1,65 cm hoặc x = –3,65 cm.

→ Thời gian gần nhất kể từ thời điểm ban đầu (vật đang ở biên là)  Δ t min = a r cos 1 , 65 4 360 0 0 , 281 = 51 , 3 m s

11 tháng 1 2022

Gợi ý đi anh 

11 tháng 1 2022

nói lại em kém anh 7 năm nhé. Nên bọn em cần gợi ý mới làm được chứ. Với lại hình như anh học cái này thì phải bít chứ. Its ra cũng phải có gợi ý...!

23 tháng 8 2016

Ta có: \Delta l = \frac{mg}{k}= 10 cm
Lực đàn hồi:
 F_{max} = k(\Delta l + A) = 1,5 N
F_{min} = k(\Delta l - A) = 0,5 N

24 tháng 8 2016

\(T=2\pi\sqrt{\frac{\Delta l_0}{9}}=0,4s\)

\(\Rightarrow\Delta l_0=4=\frac{A\sqrt{2}}{2}\)

Thời gian lò xo không giãn là \(t=2t-\frac{A\sqrt{2}}{2}\Rightarrow-A=\frac{T}{4}=0,10\left(s\right)\)

Vậy D đúng

24 tháng 8 2016

Chọn chiều dương hướng xuống dọc theo trục lò xo
Tại vị trí cân bằng ta có: mg = k\Delta l \Rightarrow \frac{k}{m}= \frac{g}{\Delta l}\Rightarrow T = 2 \pi \sqrt{\frac{\Delta l}{g}} = 0,4 s
Trong một chu kì, thời gian lò xo không dãn là thới gian vecto quay từ vị trí:
- \frac{A\sqrt{2}}{2 }\Rightarrow - A \Rightarrow - \frac{A\sqrt{2}}{2}
\Rightarrow t = \frac{T}{8} + \frac{T}{8} = \frac{T}{4} = 0,1 s

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:  (M + m)V = mv   

=> V = 0,02\(\sqrt{2}\) (m/s)

Tọa độ ban đầu của hệ hai vật  x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)

→ B

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:   \(\left(M+m\right)V=mv\)

\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)

Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)

Đáp án B

V
violet
Giáo viên
27 tháng 5 2016

Bạn tham khảo bài tương tự như thế này nhé.

Câu hỏi của Đào Hiếu - Vật lý lớp 12 | Học trực tuyến

 

2 tháng 8 2016

Độ biến dạng của lò xo khi vật ở VTCB là: \(\Delta \ell_0=\dfrac{mg}{k}=\dfrac{1.10}{100}=0,1m=10cm\)

\(\omega=\sqrt{\dfrac{k}{m}}=10(rad/s)\)

Áp dụng CT: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2^2+\dfrac{(20\sqrt 3)^2}{10^2}\)

\(\Rightarrow A = 4cm\)

Lực đàn hồi cực đại: 

\(F_{dhmax}=k\Delta\ell_{max}=k(\Delta\ell_0+A)=100.(0,1+0,04)=14(N)\)

Lực đàn hồi cực tiểu:

\(F_{dhmin}=k\Delta\ell_{min}=k(\Delta\ell_0-A)=100.(0,1-0,04)=6(N)\)