K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

Bài 2:

a: Vì AM<ÂN

nên điểm M nằm giữa hai điểm A và N

b: MN=AN-AM=5cm

c: PM=PA+AM=3+2=5cm

d: VìMP=MN

và P,M,N thẳng hàng

nên M là trung điểm của PN

a: AB=5-3=2cm

b: Trên tia BC, ta có: BC<BD

nên điểm C nằm giữa hai điểm B và D

=>BC+CD=BD

=>CD=2cm

=>AB=CD

22 tháng 12 2016

cái này toán lớp 10 á?

22 tháng 12 2016

ko mà toán 7

Xét ΔABC và ΔADE có 

AB=AD

\(\widehat{BAC}\) chung

AC=AE

Do đó: ΔABC=ΔADE

Suy ra: \(\widehat{MCD}=\widehat{MEB}\)

Xét ΔCBE và ΔEDC có

CB=ED

CE chung

BE=DC

Do đó: ΔCBE=ΔEDC

Suy ra: \(\widehat{MBE}=\widehat{MDC}\)

Xét ΔMBE và ΔMDC có

\(\widehat{MBE}=\widehat{MDC}\)

BE=DC

\(\widehat{MEB}=\widehat{MCD}\)

Do đó: ΔMBE=ΔMDC

Suy ra: ME=MC

Xét ΔAME và ΔAMC có

AM chung

ME=MC

AE=AC

Do đó: ΔAME=ΔAMC

Suy ra: \(\widehat{EAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc xAy

13 tháng 12 2019

Giải bài 1 trang 12 sgk Hình học 10 | Để học tốt Toán 10

– Trên đoạn MA, lấy điểm C sao cho MC = MB

Nhận thấy Giải bài 1 trang 12 sgk Hình học 10 | Để học tốt Toán 10 và Giải bài 1 trang 12 sgk Hình học 10 | Để học tốt Toán 10 cùng hướng nên Giải bài 1 trang 12 sgk Hình học 10 | Để học tốt Toán 10 = Giải bài 1 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Khi đó:

Giải bài 1 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD. a) Tính số đo góc C và chứng minh BD = CD b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E. Chứng minh ΔBME = ΔAMD c) Chứng minh ED = AC Bài 3. Cho ΔABC vuông tại A có AB &lt; AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC) a) Chứng minh ΔACM cân và ΔCKM =ΔCHA b) Hai đoạn...
Đọc tiếp

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB &lt; AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB &lt; AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.

Giúp mik với mik đang cần gấp

0