Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức liên hệ chiều dài day và số bụng sóng ta có $2,4=8.\dfrac{\lambda}{2} \Rightarrow \lambda =0,6m=60 cm$
Công thức tính biên độ tại một điểm bất kì trên sợi dây cách nút gần nhất một khoảng là d đang có sóng dừng với biên độ tại bụng là 2A:
$a=2A \cos \left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right).$
Gọi khoảng cách từ A tới nút gần nhất là d thì do $\dfrac{\lambda}{4}<20$ nên ta có B cách nút gần nhất với nó một khoảng 10-d.
$| a_A-a_B |=2A |\left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right)-\left(\dfrac{2 \pi \left(10-d\right)}{\lambda} +\dfrac{\pi }{2} \right) |$
$=4A |\sin \left(\dfrac{10 \pi }{\lambda}+\dfrac{\pi }{2} \right) | |\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |.$
Biểu thức trên lớn nhất khi $|\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |$ lớn nhất, tức là bằng 1.
Thay số ta có đáp án D
+ Ta biễu diễn vị trí của M và N trên đường tròn.
Từ hình vẽ, ta thấy rằng có hai khả năng xảy ra của độ lệch pha
Đáp án A
+ Khi có sóng dừng, phần tử dây cách nút một đoạn d dao dộng với biên độ a = A sin 2 π d λ , phần tử dây cách bụng một đoạn d dao động với biên độ a = A cos 2 π d λ .
+ Với a 2 = 3 mm, lớn hơn a 1 = 2 mm → hai điểm gần nhau nhất dao động cùng biên độ a 2 phải đối xứng nhau qua bụng sóng, hai điểm dao động với cùng biên độ a 1 phải đối xứng nhau qua nút sóng
→ a 1 = A sin π d 2 a 2 = A cos π d 2 ↔ 2 = A sin 10 π λ 3 = A c o s 10 π λ → A = 2 2 + 3 2 = 13 λ = 53 mm.
+ Khoảng cách giữa hai nút sóng liên tiếp là Δ d = λ 2 = 26 , 7 m m
Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)
\(\triangle\varphi = 0\)
Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)
Để biên độ sóng tại M
\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)
=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)
\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)
=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)
M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)
\(-O_1O_2 < d_2-d_1 < O_1O_2\)
Thay (1) vào ta được
\(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)
=> \(-1,745 < k < 1,455\)
=> \(k = -1,0,1.\)
Cứ giữa 2 bụng liên tiếp có 2 điểm dao động biên độ 2√⇒ 20 điểm thì k=10
Vậy λ=2cm