Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O I K A E B H F C D G 1 1 2 2
a)
IO = OB – IB => (I) tiếp xúc trong với (O).
OK = OC – KC => (K) tiếp xúc trong với (O)
IK = OH + KH => (I) tiếp xúc ngoài với (K)
b)
Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) nên là hình chứ nhật
c)
c) \(\Delta AHB\) vuông nên AE.AB = AH2
\(\Delta AHC\)vuông nên AF . AC = AH2
Suy ra AE . AB = AF . AC
d) Gọi G là giao điểm của AH và EF
Tứ giác AEHF là hình chữ nhật => AH = EF
Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)
Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)
\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)
Do đó EF là tiếp tuyến của đường tròn (I)
Tương tự, EF là tiếp tuyến của đường tròn (K)
e) - Cách 1:
Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )
Do đó EF lớn nhất khi AH = OA
<=> H trùng O hay dây AD đi qua O.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.
Ta có: \(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\x+2\left(3x-2m+1\right)=3m+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x-4m+2=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x=7m\end{cases}\Leftrightarrow\hept{\begin{cases}y=m+1\\x=m\end{cases}}}\)
Vây với mọi m, hệ phương trình luôn có nghiệm duy nhất (x ; y) = (m ; m + 1)
Độ dài đoạn thẳng OM bằng: \(\sqrt{m^2+\left(m+1\right)^2}=\sqrt{2m^2+2m+1}\)
Để M thuộc đường tròn \(\left(O;\sqrt{5}\right)\) thì \(\sqrt{2m^2+2m+1}=\sqrt{5}\Leftrightarrow2m^2+2m-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..