Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overrightarrow {OM} = \left( {2;1} \right),\overrightarrow {MN} = \left( { - 3;2} \right),\overrightarrow {MP} = \left( {2;1} \right)\)
b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP} = - 3.2 + 2.1 = - 4\)
c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
d) Ta có: \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)
e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)
Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)
Gọi M(x;y)
Ta có : \(\overrightarrow{AB}\)= (3;-2) và \(\overrightarrow{MA}\) =( -x; 3-y)
Theo bài: \(\overrightarrow{AB}\) =-2\(\overrightarrow{MA}\) <---->(3;-2) = -2( -x;3-y)
<----> \(\left\{\begin{matrix}3=-2x\\-2=-6+2y\end{matrix}\right.\)
Gỉai ra được x= -3/2 và y= 2 . Suy ra M (-3/2;2)
\(\Leftrightarrow\left(x_M-x_C;y_M-y_C\right)=\left(x_B-x_A;y_B-y_A\right)\)
\(\Leftrightarrow\left(x_M+1;y_M\right)=\left(3-2;-1-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_M+1=1\\y_M=-4\end{matrix}\right.\Rightarrow M\left(0;-4\right)\)
\(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(-1;0\right)\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\left(-4;-2\right)\)