\(x_...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

a)(P):

x-2-1012
y-2-1/20-1/2-2

(d): x =0 => y =- 4

     y = 0 => x =4 

12 tháng 5 2018

1, Có M (P) và điểm M có tung độ là -8 nên y = -8

Thay y = -8 vào (P) ta được

-8 = -x2 = -16 x = 4

M1 = (4 ;-8) ; M2 = (-4 ;-8)

Vậy …

2, hoành độ điểm chung của (P) và (d) là nghiệm của pt :

= x + m x2 + 2x + 2m = 0 (*)

Pt (*) có ’= 12 – 2m = 1 – 2m

Để (d) cắt (P) tại 2 điểm phận biệt > 0 1 - 2m > 0

m <

m < ½ thì (d) cắt (P) tại 2 điểm phân biệt A (x1 ;y1) ; B (x2 ;y2)

Theo định lý vi-et có

Theo bài ra ta có :

(x1 + y1) . (x2 + y2) =

(x1 – )(x2 - ) = 33/4 ( do y = )

x1( 1 - 2.( 1 - ) = 33/4

x1.x2.( ) = 33/4

4m2 + 16m – 33 = 0

Có = 82 -4.(-33) = 196 > 0

pt có 2 nghiệm phân biệt

m1 = ( loại ) ; m2 = - (t/m)

Vậy m = - là giá trị cần tìm

#ZyZy

12 tháng 5 2018

a,thay M(\(x_m;-8\)) vào (p) ta có

-8=\(\dfrac{-x^2}{2}\)\(\Leftrightarrow\)x=\(\pm\)4

vậy có 2 điểm \(M_1\left(-4;-8\right);M_2\left(4;-8\right)\)thuộc parabol

b,hoành độ giao điểm của đường thẳng (d) và (p) là nghiệm của pt

\(\dfrac{-x^2}{2}=x+m\) \(\Delta=4-8m\)

(d) và (p) cắt nhau tại 2 điệm phân biệt \(\Leftrightarrow\)\(\Delta\)>0hay m<\(\dfrac{1}{2}\)

với m<\(\dfrac{1}{2}\)pt trên có 2 nghiêm pb sau đó bạn tính \(x_1;x_2theo\) m hoặc tính theo vi ét sau đó tính \(y_1;y_2\)

để thay vào điều kiện (\(x_1+y_1\))(\(x_2+y_2\))=\(\dfrac{33}{4}\)rồi đối chiếu điều kiện và kết luận

27 tháng 6 2020

a, b, dễ quá bỏ qua .

b, - Xét phương trình hoành độ giao điểm :

\(\frac{1}{2}x^2=\left(m-1\right)x+\frac{1}{2}m^2+m\)

=> \(\frac{1}{2}x^2-\left(m-1\right)x-\frac{1}{2}m^2-m=0\)

=> \(\Delta=b^2-4ac=\left(-\left(m-1\right)\right)^2-\frac{4.1}{2}.\left(-\frac{1}{2}m^2-m\right)\)

=> \(\Delta=m^2-2m+1+m^2+2m=2m^2+1\ge1>0\forall m\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m .

=> ( P ) căt ( d ) tại hai điểm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2+2m\end{matrix}\right.\)

- Để \(x^2_1+x^2_2+6x_1x_2>2019\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2>2019\)

<=> \(\left(2m-2\right)^2+4\left(m^2+2m\right)>2019\)

<=> \(4m^2-8m+4+4m^2+8m>2019\)

<=> \(8m^2>2015\)

<=> \(m^2>\frac{2015}{8}\)

<=> \(\left[{}\begin{matrix}m>\sqrt{\frac{2015}{8}}\\m< -\sqrt{\frac{2015}{8}}\end{matrix}\right.\)

29 tháng 6 2020

Thanks

25 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)

\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)

\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)

Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)

\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)

\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)

26 tháng 3 2022

Xét Pt hoành độ.......

\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)

Để ... thì Δ'>0

1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)

Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.

*) Theo Hệ thức Viet ta có: 

S=x1+x2=2 và P=x1x2= -m2-2m-2

*)Ta có: 

\(\text{x^3_1 ​ +x ^3_2 ​ =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)

⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68

⇔3m2+6m-24=0⇔m=2 và m=-4 

KL: