K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Dap an D

a: BC=10

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

d: Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=1\)

Do đó:AD=3; CD=5

a: BC=10cm

b: Xét ΔABD có 

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

hay AB=AD

c: Xét tứ giác ABED có 

H là trung điểm của AE
H là trung điểm của BD

Do đó: ABED là hình bình hành

Suy ra: AB//ED

hay ED\(\perp\)AC

7 tháng 2 2022

Wow 😯😯😯😯😯

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

Ta có: ΔBAC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

b: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

Suy ra: DB=DC

Xét ΔDCG có

DF là đường cao

DF là đường trung tuyến

Do đó: ΔDCG cân tại D

=>DC=DG

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

20 tháng 5 2017

a) Gọi \(d\left(AC,DC'\right)=h\)

Khối đa diện

Khối đa diện

18 tháng 4 2016

S H B K A I C D

Gọi K là hình chiếu của I lên AB

Suy ra \(\widehat{SKI=60^0}\)

Mà \(\frac{BI}{ID}=\frac{BC}{AD}=\frac{a}{3a}=\frac{1}{2}\)\(\Rightarrow\frac{BI}{BI+ID}=\frac{1}{4}\)\(\Rightarrow\frac{BI}{BD}=\frac{1}{4}\)

Suy ra \(\frac{KI}{DA}=\frac{1}{4}\)\(\Rightarrow KI=\frac{3a}{4}\Rightarrow SI=\frac{3a\sqrt{3}}{4}\)

Do \(IK\) \\ \(AD\Rightarrow\frac{KI}{AD}=\frac{BI}{BD}\)

\(V_{A.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{1}{3}.\frac{3a\sqrt{3}}{4}.\frac{1}{2}\left(a+3a\right)a=\frac{a^3\sqrt{3}}{2}\)

Gọi H là hình chiếu của I trên SK. Ta có \(\begin{cases}AB\perp IK\\AB\perp SI\end{cases}\)\(\Rightarrow AB\perp IH\)

Từ đó suy ra \(IK\perp\left(SAB\right)\Rightarrow d\left(I,\left(SAB\right)\right)=IK\)

Mà do \(DB=4IB\Rightarrow\left(D,\left(SAB\right)\right)=4d\left(I,\left(SAB\right)\right)=4IH\)

Lại có \(\frac{1}{IH^2}=\frac{1}{IS^2}+\frac{1}{IK^2}=\frac{16}{27a^2}+\frac{16}{9a^2}=\frac{64}{27a^2}\Leftrightarrow IH=\frac{3a\sqrt{3}}{8}\)

Vậy  \(d\left(D,\left(SAB\right)\right)=\frac{3a\sqrt{3}}{2}\)