Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Xét quãng đường AB, ta có:
AB = s1 + s2 + ... + CB
⇔ AB = v1.t + v2.t + ... + vn.t + CB (1)
⇔ 120 = 10.0,25 + 2.2,5 + ... + n.2,5 + CB (2)
⇔ 120 = 2,5.(1 + 2 + ... + n) + CB
⇔ 120 = 2,5.\(\dfrac{n\left(n+1\right)}{2}\) + CB
⇔ 120 = 1,25.n(n + 1) + CB (*)
⇔ 1,25.n(n + 1) < 120
⇔ n(n + 1) < 96
⇒ n = 9.
Thay n = 9 vào (*) ⇒ CB = 120 - 1,25.90 = 7,5(km)
Thời gian đi hết quãng đường AB là:
tAB = 9.0,25 + 9.\(\dfrac{5}{60}\) + tCB
tCB = \(\dfrac{10}{v_{CB}}\) = \(\dfrac{10}{v_{10}}\) = \(\dfrac{10}{10.10}\) = \(\dfrac{10}{100}\) = 0,1(giờ)
⇒ tAB = 9.0,25 + 9.\(\dfrac{5}{60}\) + 0,1 = 3,1(giờ)
Vận tốc trung bình trên quãng đường AB là:
vtb = \(\dfrac{s_{AB}}{t}\) = \(\dfrac{120}{3,1}\) = \(\dfrac{1200}{31}\)(km/h)
Vậy vận tốc trung bình trên quãng đường AB là \(\dfrac{1200}{31}\) km/h.
Giải thích cách chuyển từ (1) thành (2): Ta có: s1 = v1.t = 10.0,25 = 2,5(km) s2 = v2.t = 2v1.t = 2.2,5(km) Rồi tương tự như vậy cho đến n. |
(Copy bài nhớ ghi rõ nguồn copy nhé!)
mink có câu trả lời rùi
có ai có nhu cầu cần trả lời thì nói mink nha
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
mÌNH MỎI TAY QUÁ
Lấy gốc tọa độ tại AA chiều dương là chiều từ AA đến BB. Gốc thời gian là lúc 7h7h
Phương trình chuyển động của :
Xe đi từ A:A: xA=36t(km−h)xA=36t(km−h)
Xe đi từ B:xB=96−28t(km−h)B:xB=96−28t(km−h)
Hai xe gặp nhau khi :xA=xB:xA=xB
→36t=96−28t→36t=96−28t
⇒t=1,5(h)⇒t=1,5(h)
xA=36t=36.1,5=54(km)xA=36t=36.1,5=54(km)
Hai xe gặp nhau lúc 8h30′8h30′. Nơi gặp nhau cách AA 54km54km
TH1:TH1: Hai xe cách nhau 24km24km trước khi hai xe gặp nhau
Hai xe cách nhau 24km
⇔⇔ xB−xA=24xB−xA=24
⇔⇔ 96−28t′−36t′=2496−28t′−36t′=24
⇔t′=1,125h⇔t′=1,125h
Vậy lúc 8h7phút30giây hai xe cách nhau 24km
TH2:TH2: Hai xe cách nhau 24k sau khi gặp nhau
Hai xe cách nhau 24km
⇔xA−xB=24⇔xA−xB=24
⇔36t′′−96+28t′′=24⇔36t″−96+28t″=24
⇔t′′=1,875(h)⇔t″=1,875(h)
Vậy lúc 8h52phút30giây hai xe cách nhau 24km
bài 2:
ta có:
thời gian người đó đi trên nửa quãng đường đầu là:
t1=S1/v1=S/2v1=S/24
thời gian người đó đi hết nửa đoạn quãng đường cuối là:
t2=S2/v2=S2/v2=S/40
vận tốc trung bình của người đó là:
vtb=S/t1+t2=S/(S/40+S/24)=S/S(140+124)=1/(1/24+1/40)
⇒vtb=15⇒vtb=15 km/h
bài 3:
thời gian đi nửa quãng đầu t1=(1/2) S.1/25=S/50
nửa quãng sau (1/2) t2.18+(1/2) t2.12=(1/2) S⇔t2=S/30
vận tốc trung bình vtb=S/(t1+t2)=S/S.(1/50+1/30)=1/(1/50+1/30)=18,75(km/h)
HT
Một xe bắt đầu khởi hành để đi từ A đến B. Quãng đường AB dài 80km. Xe cứ chạy 20 phút dừng lại nghỉ 10 phút. Trong 20 phút đầu xe chạy với vận tốc v1=12 km/h. Trong 20 phút tiếp theo sau kì nghỉ, xe chạy với vận tốc không đổi là 2v1,3v1,...kv1,...
a) Tính thời gian xe chạy từ A đến B.
b) Vận tốc trung bình của xe từ lúc bắt đầu chạy tới thời điểm đang xét biến thiên như thế nào trong thời gian 50 phút đầu? Tìm tất cả các thời điểm mà xe có vận tốc trung bình từ lúc bắt đầu chạy đến thời điểm đó là 12km/h.
a)ta có:
tổng thời gian xe đi là(ko tính thời gian nghỉ):
t=0,5+5/12=11/12h
quãng đường AB là:
S=vt=41,25km
b)ta có:
vận tốc trung bình của xe đó là:
\(v_{tb}=\frac{S}{t+t_n}=\frac{41,25}{\frac{11}{12}+\frac{1}{6}}=44,6875\)