K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

Đáp án D

Gọi .

 

 

 

Vậy trên đồ thị (C) có sáu điểm có tọa độ là các số nguyên.

29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

29 tháng 4 2016

Gọi \(M\left(x_0;x^3_0-3x_0+2\right)\) là tiếp điểm. Phương trình tiếp tuyến là :

\(\Delta:y=\left(3x^2_0-3\right)\left(x-x_0\right)+x^3_0-3x_0+2\)

Giả sử \(N\left(a;a^3-3a+2\right)\in\left(C\right),\left(a\ne x_0\right)\)

Tiếp tuyến \(\Delta\) đi qua N nên :

\(a^3-3a+2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0+2\)

\(\Leftrightarrow\left(a-x_0\right)^2\left(a+2x_0\right)=0\Leftrightarrow a=-2x_0;\left(x_0\ne a\right)\)

Suy ra \(N\left(-2x_0;-8x_0^3+6x_0+2\right)\)

Ta có \(MN=2\sqrt{6}\Leftrightarrow9x^2_0+\left(9x_0^3-9x_0\right)^2=24\Leftrightarrow x^2_0=\frac{4}{3}\)

Ta được 2 điểm là \(M\left(\frac{2\sqrt{3}}{3};\frac{10\sqrt{3}}{9}+2\right):M\left(-\frac{2\sqrt{3}}{3};\frac{10\sqrt{3}}{9}+2\right)\)

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .

31 tháng 3 2017

a) Tập xác định : D = R

limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞⁡f(x)=+∞limx→+∞⁡f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3

Bảng biến thiên:

Đồ thị hàm số:

b) y=f(x) = f(x) = -x3+3x2+9x+2.

f’(x) = -3x2+6x+9. Do đó:

f’(x-1)=-3(x-1)2+6(x-1)+9

= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4

c) f’’(x) = -6x+6

f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2

Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:

y=f’(2)(x-2) + f(2) hay y = 9x+6

23 tháng 5 2017

a) Hoành độ giao điểm của đồ thị hàm số \(y=\dfrac{2x+1}{2x-1}\)\(y=x+2\) là nghiệm của phương trình :

\(\dfrac{2x+1}{2x-1}=x+2\Leftrightarrow\dfrac{2x+1}{2x-1}-x-2=0\)

\(\Leftrightarrow\dfrac{-2x^2-x+3}{2x-1}=0\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x^2-x+3=0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Với \(x=1\) thì \(y=1+2=3;x=-\dfrac{3}{2}\) thì \(y=-\dfrac{3}{2}+2=\dfrac{1}{2}\)

Vậy tọa độ hai giao điểm là \(A\left(1;3\right),B\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\)

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)