Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2=mx+m+3\)
\(\Leftrightarrow x^2-mx-m-3=0\) (I)
Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung
\(\Leftrightarrow\) Pt (I) có hai nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)
Vậy...
Pt hoành độ giao điểm:
\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)
d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)
\(\Leftrightarrow m< 1\)
b) Phương trình hoành độ giao điểm của (P) và (d):
x² = mx - m + 1
⇔ x² - mx + m - 1 = 0
∆ = m² - 4.1.(m - 1)
= m² - 4m + 4
= (m - 2)² ≥ 0 với mọi m ∈ R
⇒ Phương trình luôn có hai nghiệm
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁x₂ = m - 1 (2)
Lại có x₁ + 3x₂ = 7 (3)
Từ (1) ⇒ x₁ = m - x₂ (4)
Thay x₁ = m - x₂ vào (3) ta được:
m - x₂ + 3x₂ = 7
2x₂ = 7 - m
x₂ = (7 - m)/2
Thay x₂ = (7 - m)/2 vào (4) ta được:
x₁ = m - (7 - m)/2
= (2m - 7 + m)/2
= (3m - 7)/2
Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:
[(3m - 7)/2] . [(7 - m)/2] = m - 1
⇔ 21m - 3m² - 49 + 7m = 4m - 4
⇔ 3m² - 28m + 49 + 4m - 4 = 0
⇔ 3m² - 24m + 45 = 0
∆' = 144 - 3.45 = 9 > 0
Phương trình có hai nghiệm phân biệt:
m₁ = (12 + 3)/3 = 5
m₂ = (12 - 3)/3 = 3
Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7
xét phương trình hoành độ giao điểm của ( p ) vả ( d )
\(x^2=2\left(m+3\right)x+1-4m\)
\(< =>x^2-2\left(m+3\right)x-1+4m=0\)
ta có : ( \(a=1;b=2\left(m+3\right);b'=m+3;c=-1+4m\) )
\(\Delta'=b'^2-ac\)
\(\Delta'=\left(m+3\right)^2-1.\left(-1+4m\right)\)
\(\Delta'=m^2+2m3+3^2+1-4m\)
\(\Delta'=m^2+6m+9+1-4m\)
\(\Delta'=m^2+6m-4m+1+9\)
\(\Delta'=\left(m^2+2m.1+1^2\right)+9\)
\(\Delta'=\left(m+1\right)^2+9>0;\forall m\)
Vay : với mọi m thì (đ) cắt (đ) tại 2 điểm phân biệt cùng nằm bên phải trục tung
CHÚ Ý : NẾU BẠN LẤY \(\Delta'\)> 0 rồi tìm tham số m ( là sai nha )
vì : bất kỳ m là số nào thì ( đ) cũng luôn cắt ( đ) tại 2 điểm phân biệt bên phải trục tung
( m không thuộc riêng về 1 giá trị nào hết nha )
OK CHÚC BẠN HỌC TỐT !!!!
phuong trinh hoanh do giao diem cua (P) va (d):
2x2= (3m+1)x- 3m+1 <=> 2x^2 - (3m+1)x + 3m-1=0 (1)
Để (P) cat (d) tai hai điểm phan biet thì phuong trinh (1) có hai nghiệm phân biệt. <=> đenta >0
Xét đen ta = (3m+1)2-8(3m-1) = 9m2 + 6m+1 - 24m +8= 9m2- 18m+ 9
9(m+1)2 >0 <=> m khac -1
Vậy ....
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....
phương trình hoành độ giao điểm là X2-mx+m-1=0
để (d) cắt (P) tại hai điểm phân biệt bên phải trục tung thì hoành độ của 2 giao điểm đều dương nghĩa là X1 và X2 đều > 0 (X1 khác X2)
xét delta=(-m)2-4(m-1)>0 => m2-4m+4>0 => (m-2)2>0 => m khác 2
do nghiệm của phương trình đều dương nên ta có tổng và tích của chúng đều lớn hơn 0
Theo hệ thức viet ta có m>0 và m-1>0 => m>1
kết hợp điều kiện ta có m>1 và m khác 2
cho xin tích đúng với