K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

A B C D E F H

Kẻ DH // AB (\(H\in BC\))

\(\Delta ABC\) có DH // AB nên theo định lí Ta-lét ta có:

\(\dfrac{AC}{AD}=\dfrac{BC}{BH}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{AD}{BH}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{EB}{BH}\) (1) (Vì AD = EB)

Trong tam giác EDH có BF // DH (vì AB // DH) nên theo định lí Ta-lét ta có: \(\dfrac{EB}{BH}=\dfrac{EF}{FD}\) (2)

Từ (1), (2) suy ra: \(\dfrac{AC}{BC}=\dfrac{EF}{FD}\)

19 tháng 7 2018

Áp dụng định lí Menelaus :

\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1

Mà AE = CE, AD = 1/3BD

=> BF/CF = 3

=> CF = 1/2 BC

7 tháng 7 2018

Tự vẽ hình nhé Nữ hoàng sến súa là ta

Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK

Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC

Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC

Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:

+ Chung CE

\(\widehat{KEC}=\widehat{FCE}\)( so le trong )

\(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))

\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)

Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)

Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)


 

7 tháng 7 2018

Hình nè, nếu bạn không vẽ được:

Hình xấu thông cảm

10 tháng 6 2020

a. Ta có: \(\frac{AB}{AC}=\frac{4,8}{6,4}=\frac{3}{4}\\ \frac{AE}{AD}=\frac{2,4}{3,2}=\frac{3}{4}\)

suy ra \(\frac{AB}{AC}=\frac{AE}{AD}\)

xét 2 tam giác ABC và AED có:

góc A chung

\(\frac{AB}{AC}=\frac{AE}{AD}\)(c/m trên)

suy ra 2 tam giác đồng dạng suy ra \(\widehat{ACB}=\widehat{ECF}=\widehat{ADE}\)

b. \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh) \(\Rightarrow\widehat{BDF}=\widehat{ECF}\)

xét 2 tam giác FDB và FCE có:

góc F chung

góc BDF = góc ECF (c/m trên)

suy ra 2 tam giác đồng dạng (g.g)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}=\frac{DB}{CE}\)

c. BD=AB-AD=4,8-3,2=1,6

CE= AC-AE = 6,4-2,4 =4

khi đó: 

\(\frac{FB}{FE}=\frac{FD}{FC}=\frac{1,6}{4}=\frac{2}{5}\Leftrightarrow\frac{FB}{FD+1,8}=\frac{FD}{FB+3,6}=\frac{2}{5}\)

suy ra hpt: \(\hept{\begin{cases}5FB=2FD+3,6\\5FD=2FB+7,2\end{cases}}\Leftrightarrow\hept{\begin{cases}5FB-2FD=3,6\\2FB-5FD=-7,2\end{cases}}\Leftrightarrow\hept{\begin{cases}FB=\frac{54}{35}\\FD=\frac{72}{35}\end{cases}}\)

13 tháng 6 2020

bằng 3455,67 nhé 

đúng 100% tk đúng cho mik

4 tháng 2 2021

a/

Ta có

ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)

b/

Ta có

AE=EF=6 cm (F đối xứng A qua E)

BE=AB-AE=8-6=2 cm

FB=EF-BE=6-2=4 cm

Do ED//BC nên

\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)

\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)