Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N D E
QUA B KẺ BE SONG SONG VỚI NC
TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO
=> TAM GIÁC AMN CÂN TẠI A
=> GÓC AMN = GÓC ANM
DO BE SONG SONG VỚI AC
=> GÓC BEM = GÓC ANM
MÀ GÓC ANM = GÓC AMN
=> GÓC AMN = GÓC BEM
=> BE = BM
TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)
=> BE = CN
=> BM = CN
TA CÓ AM = AN = X
BM = CN = Y
TA SẼ CÓ :
X + Y = AB = c
X - Y = AC = b
=> X = AM = \(\frac{b+c}{2}\)
=> Y = bm = \(\frac{c-b}{2}\)
( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào AB VÀ AC)
Hình tam giác TenDaGiac1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [M, B] Đoạn thẳng k: Đoạn thẳng [M, N] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [B, K] A = (0.24, 5.9) A = (0.24, 5.9) A = (0.24, 5.9) B = (-1.84, 2.22) B = (-1.84, 2.22) B = (-1.84, 2.22) C = (6.84, 2) C = (6.84, 2) C = (6.84, 2) Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k
Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:
Kẻ BK // AC ( K thuộc MN)
Đặt H là giao điểm của phân giác trong góc A và MN.
Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)
Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)
Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)
Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM = BK (2)
Từ (1) và (2) suy ra BM = CN
Ta thấy AM = AB + BM = c + BM
AN = AC - NC = b - NC
Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c
Vậy \(AM=\frac{b+c}{2}\)
Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\) ( Với trường hợp b > c và ngược lại)
hình (tự vẽ ha)
bài này phải kẻ thêm hình:
Từ D,E kẻ các đường thẳng vuông góc với BC lần lượt tại M,N
Xét \(\Delta⊥DBMvà\Delta⊥ECN:\)
\(BD=CE\left(gt\right)\)
\(\widehat{DBM}=\widehat{CEN}\left(\widehat{DBM}=\widehat{ACB}\left(gt\right);\widehat{ACB}=\widehat{CEN}\left(đ^2\right)\right).\)
\(=>\Delta⊥DBM=\Delta⊥ECN\left(ch-gn\right)\)(lưu ý :\(\:đ^2\)là đối đỉnh ha)
\(=>DM=NE\left(c-t-ư\right)\)
Do \(DM⊥BC;EN⊥BC=>DM\)// \(EN\)
\(=>\widehat{MDI}=\widehat{NEI}\left(slt\right)\)
\(=>\Delta⊥MDI=\Delta⊥NEI\left(cgv-gnk\right)\)
\(=>DI=IE\left(c-t-ư\right)\left(đpcm\right)\)
P/S bài này là làm theo cách D nằm gần hơn với B so với trung điểm của AB
còn nếu vẽ hình theo cách D nằm gần A hơn so với trung điểm của AB thì vẫn làm t.tự như trên thôi
Bạn Witch Rose ơi!
\(\widehat{ACB}\)đâu có \(đ^2\)với \(\widehat{CEN}\)đâu nhỉ ?
Hình bạn tự vẽ nha
Bài làm :
a ) Gọi giao điểm của tia phân giác của góc BAC và đường vuông góc với tia phân giác của BAC là N
Xét tam giác AMD và tam giác AME có :
AMD = AME ( = 90o )
DM : cạnh chung
DAM = EDM ( vì AN là tia phân giác của BAC => BAN = CAN hay DAM = EDM )
DO đó tam giác AMD = tam giác AME ( g . c . g )
=> AD = AE ( hai cạnh tương ứng )
=> tam giác ADE cân tại A ( định nghĩa tam giác cân )
Vì tam giác ADE cân tại A ( cmt )
=> AEM = ADM ( tính chất của tam giác cân ) ( 1 )
Vì BF // AC ( gt ) => BFD = AED ( đồng vị ) ( 2 )
Từ ( 1 ) và ( 2 ) => ADF = BFD hay BDF = BFD
=> tam giác BDF cân tại B ( dấu hiệu nhận biết tam giác cân )
b ) Xét tam giác BFM và tam giác CEM có :
FBM = ECM ( Vì BF // AC ( gt ) )
MB = MC ( vì M là trung điểm của BC ( gt ) )
BMF = CME ( đối đỉnh )
DO đó tam giác BFM = tam giác CEM ( g . c. g )
=> MF = ME ( 2 cạnh tương ứng ) mà MF + ME = EF
=> M là trung điểm của EF
c ) AC - AB = ( AE + EC ) - ( AD - BD )
= AE + EC - AD + BD
= EC + BD ( vì AE = AD ( cmt ) ) ( 1 )
Vì tam giác BDF cân tại B ( CM a ) => BD = BF ( định nghĩa tam giác cân ) ( 2 )
tam giác BFM = tam giác CEM ( CM b ) => BF = EC ( hai cạnh tương ứng ) ( 3 )
Từ 1,2,3 => AC - AB = 2BD
Cảm ơn bạn nguyen duc thang mình cho bạn 3 tk rồi đó
tu ve hinh :
xet tamgiac AHB va tamgiac AHC co : goc AHB = goc AHC = 90 do AH | BC (gt) (2)
tamgiac ABC vuong can tai A (gt) => AB = AC (dn) va goc ABC = goc ACB = 45 (tc) (1)
=> tamgiac AHB = tamgiac AHC (ch - gn)
=> goc BAH = goc CAH (dn)
goc BAH + goc CAH = goc ABC ma goc ABC = 90 do tamgiac ABC vuong can tai A (gt)
=> goc BAH = goc CAH = 45 (3)
(1)(2)(3) => tamgiac AHB va tamgiac AHC vuong can