K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Trần Thanh Phương@Nguyễn Việt LâmMysterious Person

13 tháng 2 2020

nếu trong trường hợp tất cả các điểm tập trung tại 1 vùng lân cận thì chỉ cần đặc điểm M để điểm M cách \(A_i\) một khoản hơn 1

còn nếu nó tách làm 2 phần thì trường hợp 2 vùng này đối diện nhau là khả quan nhất nhưng số đo dây cung của góc \(45^0\) trong TH này là \(\sqrt{2}\) vì vậy vẫn có điểm thõa mãn bài toán

từ 3 vùng trở lên là nằm trong diện phân bố đều ==> mình làm lun trường hợp phân bố đều . khi đó điểm nào cũng thõa mãn

nếu trong trường hợp chia 3 không đều thì ta chỉ cần tìm M cách xa vùng nhiều điểm nhất là được

đây là cách giải biện luận của lớp 9 còn lớp 10 thì khác nhé khi đó đã có khái niệm về phương trình đường tròn rồi nên giải mới làm được

Mình mới lớp ... thôi nên chưa học toán lớp 9 nha 

Bạn nhờ người khác giải hộ đi.

7 tháng 5 2020

mik ko biết

15 tháng 6 2019

bài 2 

Cộng 2 vế của -4038.(1) + (2) ta được

\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)

                                                                       \(\le2019^3+1-2019.2019^2-2019.2019^2\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)

\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)

\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)

Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)

\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)

*Nếu A = 0 

Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)

Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)

*Nếu A = 1 

\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)

Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0

Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019

Giả sử \(a_1=a_2=...=a_{2018}=2019\)

Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)

               \(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)

Thử lại...(tự thử nhé)

Vậy...

                                                      

15 tháng 6 2019

Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4

Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3

Mà n là số tự nhiên nên n = 1

27 tháng 6 2020

a, b, dễ quá bỏ qua .

b, - Xét phương trình hoành độ giao điểm :

\(\frac{1}{2}x^2=\left(m-1\right)x+\frac{1}{2}m^2+m\)

=> \(\frac{1}{2}x^2-\left(m-1\right)x-\frac{1}{2}m^2-m=0\)

=> \(\Delta=b^2-4ac=\left(-\left(m-1\right)\right)^2-\frac{4.1}{2}.\left(-\frac{1}{2}m^2-m\right)\)

=> \(\Delta=m^2-2m+1+m^2+2m=2m^2+1\ge1>0\forall m\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m .

=> ( P ) căt ( d ) tại hai điểm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2+2m\end{matrix}\right.\)

- Để \(x^2_1+x^2_2+6x_1x_2>2019\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2>2019\)

<=> \(\left(2m-2\right)^2+4\left(m^2+2m\right)>2019\)

<=> \(4m^2-8m+4+4m^2+8m>2019\)

<=> \(8m^2>2015\)

<=> \(m^2>\frac{2015}{8}\)

<=> \(\left[{}\begin{matrix}m>\sqrt{\frac{2015}{8}}\\m< -\sqrt{\frac{2015}{8}}\end{matrix}\right.\)

29 tháng 6 2020

Thanks

13 tháng 11 2018

Dễ c/m đc: \(\Delta AHB~\Delta DOE\)

=>  \(\frac{AB}{DE}=\frac{AH}{OD}=\frac{GH}{OE}=\frac{1}{2}\)

Gọi K là trung điểm AH 

Dễ c.m: AODK là hình bình hành

=> DK = OA = R

Xét tam giác ODA1:  \(OA_1^2=OD^2+DA_1^2=OD^2+DH^2=\frac{1}{2}\left(OH^2+DK^2\right)=\frac{1}{2}\left(OH^2+R^2\right)\)

MỌI NGƯỜI GIÚP MK Ý CHỨNG MINH DƯỚI ĐÂY:

Chứng minh:    \(OB_1^2=OB_2^2=\frac{1}{2}\left(OH^2+R^2\right);\)\(OC_1^2+OC_2^2=\frac{1}{2}\left(OH^2+R^2\right)\)