Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
OC vuông góc với OA = 90°
Mà OB' là phân giác A'OC
=> A'OB' = 90/2 = 45°
Mà OA là tia đối OA' (gt)
=> AOB = A'OB' = 45°
b) Vì B'OD = 90°
Mà A'OB' = 45°(cmt)
=> A'OD = 45°
=> A'OD = A'OB' = 45°
=> OA' là phân giác B'OD
Cho tam giác ABC, tia phân giác trong AD , M là điểm bất kì thuộc đường thẳng BC. Qua M vẽ đường thẳng song song với AD cắt AB,AC lần lượt tại P,Q. Chứng minh rằng tam giác APQ có hai góc bằng nhau
Ta có hình vẽ:
A B A' B' m
Giả sử Om là tia phân giác của AOB => \(AOm=BOm=\frac{1}{2}.AOB\)
Do OA' vuông góc với OA; OB' vuông góc với OB
=> AOA' = 90o; BOB' = 90o
Ta có: AOB + A'OB = AOA' = 90o (1)
AOB + AOB' = BOB' = 90o (2)
Từ (1) và (2) => A'OB = AOB'
Quay trở lại với giả sử lúc đầu, từ giả sử ta đã suy ra\(AOm=BOm=\frac{1}{2}.AOB\)
=> A'OB + BOm = AOm + AOB'
=> A'Om = B'Om
Mà Om nằm giữa 2 tia OA' và OB'
=> Om là tia phân giác của A'OB' (đpcm)
b) Ta có:
A'OB' + AOB = BOB' + BOA' + AOB
=> A'OB' + AOB = 90o + AOA'
=> A'OB' + AOB = 90o + 90o = 180o (đpcm)
gọi ot là tia phân giác của oa và ob suy ra ot nằm giữa 2 tia oa và ob mà oa'vuông góc oa. ob' vuông góc ob nên tia ot nằm giữa 2 tia oa' và ob' mà tob' = toa' = 1/2 a'ob' nên ot là tia phân giác của a'ob' suy ra aob và a'ob' có chung tia phân giác là ot Phần b tách ra các góc cộng vào = a'ob'