Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
bài 4:
Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường s1: t’1 = S1/V1 ( / : là chia).
Thời gian sửa xe : t = 15 phút = ¼ h.
Thời gian đi quãng đường còn lại : t’2 = (S1-S2)/V2.
Theo bài ra ta có : t1 – (t’1 + ¼ + t’2) = 30 ph = ½ h.
T1 – S1/V1 – ¼ - (S-S1)/V2 = ½. (1).
S/V1 – S/V2 – S1.(1/V1- 1/V2) = ½ +1 /4 =3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- ¾ = ¼.
Hay S1 = ¼ . (V1- V2)/(V2-V1) = ¼ . (12.15)/(15-12) = 15 km.
bài 1:
a) Lúc xe từ B xuất phat thì xxe từ A đi được quáng đường: S=40 km
*/PTCĐ:
X1= 40+ 40*t
X2= 25*t
a) Xe đến B trước là xe 1.
Thời gian xe 1 đi: 54;50 = 1.08 (giờ)
Thời gian xe 2 đi là: \(\dfrac{54;3}{60}\) + \(\dfrac{54-\left(54;3\right)}{45}\) = 0.3 + 0.8 = 1.1 (giờ)
1.8 < 1.1 suy ra xe 1 đến B trước.
b) Khi hai xe gặp nhau, tức là chúng đã đi được quãng đường bằng nhau kể từ A.
Gọi t là thời gian từ lúc hai xe bắt đầu xuất phát đến khi gặp nhau; ta có phương trình:
50t = \(\dfrac{54}{3}\)+ 45(t - \(\dfrac{54:3}{60}\))
5t = 4.5
t = 0.9 (giờ)
Suy ra, vị trí hai xe gặp nhau cách A: 0.9 x 50 = 45 (km)
chúc em học vui nha!
theo đề bài ta có \(v2=\dfrac{v1}{2}\)
thời gian xe thứ nhất đi được nữa quãng đường đầu
\(t1=\dfrac{s1}{v1}=\dfrac{\dfrac{1}{2}s}{\dfrac{2v1}{2}}=\dfrac{s}{2v1}=\dfrac{4}{2v1}\)
thời gian xe thứ nhất đi được nữa quãng đường sau
\(t2=\dfrac{s2}{v2}=\dfrac{\dfrac{1}{2}s}{\dfrac{1}{2}v1}=\dfrac{s}{v1}=\dfrac{4}{v1}\)
ta có \(t1+t2=t\)
\(\dfrac{4}{2v1}+\dfrac{4}{v1}=\dfrac{1}{6}\)
\(\dfrac{12}{6v1}+\dfrac{24}{6v1}=\dfrac{v1}{6v1}\)
\(v1=\dfrac{36km}{h}\) vậy giả thiết \(v2=\dfrac{v1}{2}=>v2=\dfrac{36}{2}=\dfrac{18km}{h}\)
chỉ cần tìm vtb1 và vtb2 là tính được cả ý dưới
Bài làm:
Xét quãng đường AB, ta có:
AB = s1 + s2 + ... + CB
⇔ AB = v1.t + v2.t + ... + vn.t + CB (1)
⇔ 120 = 10.0,25 + 2.2,5 + ... + n.2,5 + CB (2)
⇔ 120 = 2,5.(1 + 2 + ... + n) + CB
⇔ 120 = 2,5.\(\dfrac{n\left(n+1\right)}{2}\) + CB
⇔ 120 = 1,25.n(n + 1) + CB (*)
⇔ 1,25.n(n + 1) < 120
⇔ n(n + 1) < 96
⇒ n = 9.
Thay n = 9 vào (*) ⇒ CB = 120 - 1,25.90 = 7,5(km)
Thời gian đi hết quãng đường AB là:
tAB = 9.0,25 + 9.\(\dfrac{5}{60}\) + tCB
tCB = \(\dfrac{10}{v_{CB}}\) = \(\dfrac{10}{v_{10}}\) = \(\dfrac{10}{10.10}\) = \(\dfrac{10}{100}\) = 0,1(giờ)
⇒ tAB = 9.0,25 + 9.\(\dfrac{5}{60}\) + 0,1 = 3,1(giờ)
Vận tốc trung bình trên quãng đường AB là:
vtb = \(\dfrac{s_{AB}}{t}\) = \(\dfrac{120}{3,1}\) = \(\dfrac{1200}{31}\)(km/h)
Vậy vận tốc trung bình trên quãng đường AB là \(\dfrac{1200}{31}\) km/h.
Giải thích cách chuyển từ (1) thành (2):
Ta có: s1 = v1.t = 10.0,25 = 2,5(km)
s2 = v2.t = 2v1.t = 2.2,5(km)
Rồi tương tự như vậy cho đến n.
(Copy bài nhớ ghi rõ nguồn copy nhé!)
pn quên chưa ghi nguồn!!!