Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=> \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)
=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.
b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)
=> Để giá trị phân thức A = 0 thì x = 3
Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé
a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)
b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)
\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
\(\left(5x-4\right)\left(2x+3\right)=10x^2+15x-8x-12=10x^2+7x-12\)
\(b,\frac{x-4}{x-2}+\frac{5x-8}{x-2}=\frac{x-4+5x-8}{x-2}=\frac{6\left(x-2\right)}{x-2}=6\)
\(c,\frac{x-9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x-9}{\left(x+3\right)\left(x-3\right)}-\frac{3}{x\left(x+3\right)}\)
\(=\frac{x^2-9x}{x\left(x+3\right)\left(x-3\right)}-\frac{3x-9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-9x-3x+9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-6x+9}{x\left(x+3\right)\left(x-3\right)}\)
\(=\frac{x-3}{x\left(x+3\right)}\)
CÂU 1 :
a, ( 5x-4 ) ( 2x + 3 )
= 10x + 15x -8x -12
= 17x - 12
b, \(\frac{x-4}{x-2}\)+ \(\frac{5x-8}{x-2}\)
= \(\frac{x-4+5x-8}{x-2}\)
= \(\frac{6x-12}{x-2}\)
= \(\frac{6\left(x-2\right)}{x-2}\)
= 6
c, \(\frac{x-9}{x^2-9}\)- \(\frac{3}{x^2+3x}\)
= \(\frac{x-9}{\left(x-3\right)\left(x+3\right)}\)- \(\frac{3}{x\left(x+3\right)}\)
= \(\frac{\left(x-9\right).x}{x\left(x-3\right).\left(x+3\right)}\)- \(\frac{3.\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-9x}{x\left(x-3\right)\left(x+3\right)}\)- \(\frac{3x-9}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-9x-3x+9}{x\left(x-3\right)\left(x+3\right)}\)
= \(\frac{x^2-12x+9}{x\left(x-3\right)\left(x+3\right)}\)
1/. PT <=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^4+x^2\right)-\left(9x^2+9\right)}-\frac{3\left(x+2\right)}{\left(x^2+2x\right)+\left(3x+6\right)}-\frac{2}{x-3}=0\)
<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{x^2\left(x^2+1\right)-9\left(x^2+1\right)}-\frac{3\left(x+2\right)}{x\left(x+2\right)+3\left(x+2\right)}-\frac{2}{x-3}=0\)
<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-9\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)
<=>\(\frac{\left(13-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\) (1)
ĐKXĐ: \(x\ne3vàx\ne-3\)
(1) => \(13x-39-x^2+3x+6-3x+9-2x-6=0\)
<=> \(x^2-11x+30=0\)
<=> (x2-5x) -(6x - 30) = 0
<=> x(x - 5) -6 (x - 5) = 0
<=> (x-5) (x - 6) = 0
<=> x = 5 hay x = 6 (nhận )
Vậy pt đã cho có tập nghiệm S = {5;6}
bài 1 ( tự luận )
a, Để \(\frac{3x+3}{x^2-1}\)Xác định
\(\Rightarrow\orbr{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne-1\\x\ne1\end{cases}}\)
\(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)
Thay \(\frac{3}{x-1}=2\)......
\(c,\)Để \(\frac{3}{x-1}\)nguyên
\(\Rightarrow3⋮x-1\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(x-1=1\Rightarrow x=2\)
\(x-1=-1\Rightarrow x=0\)
\(x-1=3\Rightarrow x=4\)
\(x-1=-3\Rightarrow x=-2\)
\(KL:x\in\left\{0;4;\pm2\right\}\)