Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
Nhận xét nào sau đây là sai?
A:Sự oxi hóa chậm là quá trình oxi hóa có kèm theo tỏa nhiệt nhưng không phát sáng
B:Oxi là chất oxi hóa trong các phản ứng hóa học.
C:Sự cháy là sự oxi hóa có kèm theo tỏa nhiệt và không phát sáng.
D:Sự oxi hóa là quá trình tác dụng của một chất với oxi.
# HOK TỐT #
Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được
= x2 - bx - ax + ab = x(x-b) - a(x-b) = (x-b)(x-a).
Chúc bạn học tốt
Phân tích đa thức thành nhân tử :
\(x^2-\left(a-b\right)x+ab\)
\(=x^2-\left(ax+bx\right)+ab\)
\(=x^2-ax-bx+ab\)
\(=\left(x^2-ax\right)-\left(bx+ab\right)\)
\(=\left[x\left(x-a\right)\right]-\left[b\left(x-a\right)\right]\)
\(=\left(x-a\right)\left(x-b\right)\)
Đặt \(\left|x-4\right|=t\left(t>0\right)\), khi đó ta có \(B=t\left(2-t\right)=-t^2+2t=1-\left(t-1\right)^2\le1\)
Vậy giá trị lớn nhất của B là 1 khi \(t=\left|x-4\right|=1\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Chúc em học tốt :)
Cô làm cách 2 nhé:
Với \(x\ge4\), pt trở thành: \(\left(x-4\right)\left[2-\left(x-4\right)\right]=\left(x-4\right)\left(6-x\right)=-x^2+10x-24=1-\left(x-5\right)^2\)
Do \(\left(x-5\right)^2\ge0\) nên \(-\left(x-5\right)^2\le0\Rightarrow1-\left(x-5\right)^2\le1\)
Với \(x< 4\), pt trở thành : \(\left(4-x\right)\left[2-\left(4-x\right)\right]=\left(4-x\right)\left(x-2\right)=-x^2+6x-8\)
\(=-x^2+6x-9+1=1-\left(x-3\right)^2\le1\)
Vậy GTLN của B là 1 khi x = 3 hoặc x = 5.
hello các đại ca
đại ca nào ở đây