Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xin lỗi bạn mình k làm đầy đủ đc ạ :
2) a) Vì (x-3)(2y+1) = 7
=> x-3 và 2y + 1 \(\in\)Ư(7) = { 1;7}
Ta có bảng :
x-3 | 1 | 7 |
x | 4 | 10 |
2y+1 | 7 | 1 |
y | 3 | 0 |
Vậy...
b) (2x+1)(3y-2) = -55
=> 2x +1 và 3y - 2 \(\in\)Ư(-55) = { 1; 5 ; 11 ; 55}
Ta có bảng :
2x+1 | 1 | 55 | 5 | 11 | |||
x | 0 | 27 | 2 | 5 | |||
3y-2 | 55 | 1 | 11 | 5 | |||
y | 19 | 1 | ktm | ktm |
Sr kẻ bảng thừa cột :))
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(c\ne0\)
Có: \(\hept{\begin{cases}a+\frac{b}{c}=11\\b+\frac{a}{c}=14\end{cases}\Leftrightarrow}a+b+\frac{a+b}{c}=25\)
\(\Leftrightarrow\left(a+b\right)\left(1+\frac{1}{c}\right)=\frac{a+b}{c}\cdot\left(c+1\right)=25\)
Vì \(c+1\ne1\)
nên: \(\frac{a+b}{c}=1\)hoặc \(\frac{a+b}{c}=5\)hoặc \(\frac{a+b}{c}=-5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
Đáp án cần chọn là: B
Ta có: 11⋮11;55⋮11⇒(11+55)⋮11 (theo tính chất 1)