Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
qui đồng ms biểu thức trên và cộng lại ta có:
MS = 2.3.4.5. ...... 25 chia hết cho 13, 17, 19
13,17,19 đều là số nguyên tố nên MS chia hết cho 13x17x19 =4199.
bây giờ ta chỉ cần chứng minh TS không chia hết cho 4199 (để khi làm tối giản không mất 3 thừa số 13,17,19
ta có:
TS = tổng các số hạng (24 số hạng) trong đó có 21 số hạng đều có chứa cả 3 số 13,17,19 nên chia hết cho 4199
A= tổng 3 số hạng còn lại chỉ chứa 2 trong 3 thừa số 13,17,19
A= 2.3.....12.14....17. ...25 + 2.3.4.......13.....16.18.19...25 + 2.3......13......17.18.20.....25
=2.3.....12.14...16.18.20.....25 (17.19+ 13.17 + 13.19)
=2.3.....12.14...16.18.20.....25 . 719
719 không chia hết cho 13,17,19 nên A không chia hết cho 13,17,19
A không chia hết cho 13x17x19= 4199
vậy tử số không chia hết cho 4199 (đpcm)
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)
1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản,
và A/B là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố => đpcm
1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản,
và A/B là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố => đpcm