Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : A = 2 + 2^2 + 2^3 + ... + 2^50
A = (2 + 2^2) + (2^3 + 2^4) + ... + (2^49 + 2^50)
A = 2. ( 1+2) + 2^3. (1 + 2) + ... + 2^49. (1 + 2)
A = 2 . 3 + 2^3 . 3 + .... + 2^49 . 3
A = 3. (2 + 2^3 + .... + 2^49) chia hết cho 3.

A=2+22+23+24+25+26+27+28+29+210
=2(1+2)+2^3(1+2)+2^5(1+2)+2^7(1+2)+2^9(1+2)
=2.3+2^3.3+2^5.3+2^7.3+2^9.3
=3(2+2^3+2^5+2^7+2^9)chia hết cho 3
đpcm tích mik vs
A = 2+ 22 +23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
A = (2+ 22 ) + (23 + 24 ) + (25 + 26 ) + ( 27 + 28 ) + (29 + 210 )
A = 2(1+2 ) + 23(1+2) + 25 (1+2) + 27(1+2) + 29(1+2)
A = 2.3 + 23 .3 + 25.3 + 27.3 + 29 .3
A = 3( 2+23+25+27 + 29) \(⋮\) 3
=> đpcm

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

Ta có: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{10}\left(1+2+2^2\right)\)
\(A=\left(1+2+2^2\right)\left(2+2^4+2^7+2^{10}\right)\)
\(A=7\left(2+2^4+2^7+2^{10}\right)\)và hiển nhiên tích này chia hết cho 7.
Vậy tổng \(2+2^2+2^3+...+2^{10}+2^{11}+2^{12}\)chia hết cho 7.
\(A=2+2^2+2^3+...+2^{50}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{49}.3\)
\(A=3\left(2+2^3+...+2^{49}\right)\)
Có : \(A=3\left(2+2^3+...+2^{49}\right)⋮3\)
\(\Rightarrow A=2+2^2+2^3+...+2^{50}⋮3\)