K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
1 tháng 10 2020
b.
\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)
\(\Leftrightarrow sinx-1=3k\)
\(\Leftrightarrow sinx=3k+1\)
Do \(-1\le sinx\le1\)
\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)
\(\Rightarrow k=0\)
\(\Rightarrow sinx=1\)
\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
NV
Nguyễn Việt Lâm
Giáo viên
1 tháng 10 2020
c.
ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow cosx-1=4k-1\)
\(\Leftrightarrow cosx=4k\)
Mà \(-1\le cosx\le1\Rightarrow-1\le4k\le1\)
\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)
\(\Rightarrow cosx=0\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
\(2cos3x\left(2-4sin^2x+1\right)=1\)
\(\Leftrightarrow2cos3x\left(3-4sin^2x\right)=1\)
Nhận thấy \(sinx=0\Leftrightarrow x=k\pi\) không phải nghiệm, nhân 2 vế của pt với \(sinx:\)
\(2cos3x\left(3sinx-4sin^3x\right)=sinx\)
\(\Leftrightarrow2cos3x.sin3x=sinx\)
\(\Leftrightarrow sin6x=sinx\Leftrightarrow\left[{}\begin{matrix}6x=x+k2\pi\\6x=\pi-x+l2\pi\end{matrix}\right.\) (chú ý \(x\ne m.\pi\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{7}+\dfrac{l2\pi}{7}\end{matrix}\right.\) ; \(x\ne m.\pi\)
Xét trên \(\left[-4\pi;6\pi\right]\): \(\left\{{}\begin{matrix}-4\pi\le\dfrac{k2\pi}{5}\le6\pi\\-4\pi\le\dfrac{\pi+l2\pi}{7}\le6\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-10\pi\le k\le15\pi\\-13\le l\le20\pi\end{matrix}\right.\)
Vậy tổng các nghiệm:
\(S=\pi\left(\sum\limits^{15}_{k=-10}\dfrac{2k}{5}+\sum\limits^{20}_{l=-13}\dfrac{2l+1}{7}-\sum\limits^6_{m=-4}m\right)=\dfrac{377.\pi}{7}\)