\(y=mx+3\) cắt parabol \(\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2019

Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:

\(x^2-4x+3=mx+3\)

\(\Leftrightarrow x^2-(m+4)x=0\)

\(\Leftrightarrow x(x-m-4)=0(*)\)

Để 2 ĐTHS cắt nhau tại 2 điểm phân biệt $A,B$ thì pt phải có 2 nghiệm phân biệt

\(\Leftrightarrow m\neq -4\). Khi đó, PT có 2 nghiệm phân biệt \(\left\{\begin{matrix} x_A=0\\ x_B=m+4\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} y_A=mx_A+3=3\\ y_B=mx_B+3=m^2+4m+3\end{matrix}\right.\)

\(\Rightarrow AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{(m^2+1)(m+4)^2}\)

\(d(O,AB)=d(O,(d):y= mx+3)=\frac{|m.0-0+3|}{\sqrt{m^2+1}}=\frac{3}{\sqrt{m^2+1}}\)

Như vậy:

\(S_{OAB}=\frac{d(O,AB).AB}{2}=\frac{9}{2}\)

\(\Leftrightarrow \frac{3}{\sqrt{m^2+1}}.\sqrt{(m^2+1)(m+4)^2}=9\)

\(\Leftrightarrow |m+4|=3\Rightarrow m=-1\) hoặc $m=-7$

NV
2 tháng 3 2020

Phương trình hoành độ giao điểm:

\(x^2-4x+3=mx+3\)

\(\Leftrightarrow x\left(x-m-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=m+4\end{matrix}\right.\)

Để (d) cắt (P) tại 2 điểm pb \(\Rightarrow m\ne-4\)

Ta được tọa độ 2 điểm \(A\left(0;3\right);B\left(m+4;m^2+4m+3\right)\)

\(\Rightarrow OA=3\)

Gọi H là chân đường cao hạ từ B xuống OA \(\Rightarrow BH=\left|x_B\right|=\left|m+3\right|\)

\(\Rightarrow\frac{1}{2}BH.OA=\frac{9}{2}\Rightarrow BH=3\Rightarrow\left|m+3\right|=3\Rightarrow\left[{}\begin{matrix}m=0\\m=-6\end{matrix}\right.\)

Câu 1 1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\) 2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\) Câu 2: 1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm...
Đọc tiếp

Câu 1

1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)

2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

Câu 2:

1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.

2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)

Câu 3:

1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\)\(AB=\sqrt{5}\)

2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)

Câu 4:

1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)

Câu 5:

1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)

a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.

b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)

2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)

0
mọi người giúp giải mấy bài sau với ạ ! cám ơn trước. 1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\) 2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành...
Đọc tiếp

mọi người giúp giải mấy bài sau với ạ !
cám ơn trước.

1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\)

2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành lần lượt là B1,B2. Chứng minh: OB1.OB2=1

3. Cho parabol (P) có pt y=x2-3x+1 và đường thẳng d: y=(2m+1)x+2 và điểm M(3;3). Tìm m để d cắt (P) tại 2 điểm pb A, B sao cho tam giác MAB vuông cân tại M.

4. Cho hàm số f(x) = ax2+bx+c, biết rằng đồ thị hàm số f(x) cắt trục hoành tại 2 điểm pb thuộc đoàn [0;1]. Tìm giá trị lớ nhất và nhỏ nhất của biểu thức \(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)

5. Cho hàm số bậc hai f(x) = ax2+bx+c (a khác 0).C/m : nếu f(x) \(\ge\) 0 với mọi x \(\in\)R thì 4a + c \(\ge\) 2b

0
NV
13 tháng 11 2018

\(\left|x_1-x_2\right|=2\sqrt{2}\Rightarrow x_1^2-2x_1x_2+x_2^2=8\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2=8\) (1)

Để (P) cắt Ox tại 2 điểm thì phương trình \(mx^2-2\left(m+1\right)x+m+3=0\) có hai nghiệm phân biệt

\(\Rightarrow m\ne0\)\(\Delta'=\left(m+1\right)^2-m\left(m+3\right)=1-m>0\Rightarrow m< 1;m\ne1\)

Theo Viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)

Thế vào (1):

\(\left(\dfrac{2m+2}{m}\right)^2-4\left(\dfrac{m+3}{m}\right)=8\Leftrightarrow2m^2+m-1=0\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{1}{2}\end{matrix}\right.\)

NV
13 tháng 11 2018

Ghi nhầm điều kiện xíu, cuối dòng 3 là \(m\ne0\) nhé, mình gõ nhầm số 1 vào

3 tháng 11 2018

Câu 2: (d) : y= kx + x+ 2

Vì (d) cắt trục hoành tại điểm có hoành độ bằng 1

nên (d) sẽ cắt A(1;0)

A(1;0) ∈ (d) ⇔ 0 = k +1+2 ⇔ k= -3

Vậy k = -3

Câu 3:

y = f(x) = \(x^2-4x+3\)

TXĐ: D = R

Đỉnh I (2;-1)

Vì a > 0 nên hàm số đồng biến trên khoảng (-∞ ; 2) và nghịch biến trên khoảng (2;+∞)

Ta có: hàm số nằm trên đoạn [ -2;1]

Suy ra: giá trị lớn nhất đạt được khi x= -2 và giá trị nhỏ nhất đạt được khi x = 1

Với x = -2 ⇒ y = 15

Với x = 1 ⇒ y= 0

Vậy giá trị lớn nhất M = 15 , giá trị nhỏ nhất m = 0