Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 31+32+33+34+35+...+32012
=(3^1+3^2+3^3+3^4+3^5)+...+(3^2008+3^2009+^3^2010+3^2011+3^2012)
=(3*1+3*3+3*3^2+3*3^3+3*3^4)+...+(3^2008*1+3^2008*3+3^2008*3^2+3^2008*3^3+3^2008*3^4)
=3*(1+3+3^2+3^3+3^4)+....+3^2008*(1+3+3^2+3^3+3^4)
=3*121+...+3^2008*121
=(3+3^6+...+3^2008)*121
Vì 121 chia 120 dư 1
Nên 31+32+33+34+35+...+32012 chia hết cho 120
*là nhân nha bạn
Đặt S=\(3\)\(+\)\(3^2\)\(+\)\(3^3\)\(+\)...............\(+\)\(3^{2012}\)
\(\Rightarrow\)S=[\(3\)\(+\)\(3^2\)\(+\)\(3^3\)\(+\)]\(+\)........................\(+\)[\(3^{2009}\)\(+\)\(3^{2010}\)\(+\)\(3^{2011}\)\(+\)\(3^{2012}\)]
\(\Rightarrow\)S=120\(+\).......................\(+\)\(3^{2008}\)[\(3\)\(+\)\(3^2\)\(+\)\(3^3\)\(+\)\(3^4\)]
\(\Rightarrow\)S=120\(+\).......................\(+\)\(3^{2008}\)\(+\)120
\(\Rightarrow\)S=120[1\(+\)................\(+\)\(3^{2008}\)]
VÌ 120\(⋮\)120 \(\Rightarrow\)S\(⋮\)120
S = 1 + 3 + 32 + 33 + ... + 38 + 39
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )
S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 )
S = 4 + 4 .32 + .. + 4 . 38
S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4
Vậy S \(⋮\)4 ( đpcm )
Học tốt
#Dương
S = 1 + 3 + 32 + 33 + 34+35+ 36 + 37 + 38+39
S=( 1 + 3)+(32 + 33)+(34+35)+(36 + 37)+(38+39)
s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)
S=4.(1+32+34+36+38)
CHIA HẾT CHO 4
Ta có :
\(3^1=3;3^2=9;3^3=27;3^4=81;3^5=243\)
Do đó :
\(3^1+3^2+3^3+3^4+3^5=3+9+27+81+243=363\)
Nên
\(3^1+3^2+3^3+3^4+3^5+....+3^{2012}=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)\)\(+.......+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)=120+3^4.120+......3^{2008}.120\)
Vậy \(3^1+3^2+3^3+3^4+3^5+.....+3^{2012}\)không chia hết cho 120
Tổng trên chia hết cho 120 vì
\(\left(3+3^2+3^3+3^4\right)=120\)
thế nên cứ tổng 4 số hạng liên tiếp của tổng trên là chia hết cho 120
mà 120 chia hết cho 4
nên tổng đã cho chia hết cho 120
ta có 3^1+3^2+........+3^2012
=>(3^1+3^2+3^3+3^4)+.........+3^2009(3^1+3^2+3^3+3^4)
=>120+........................................+3^2009*120
=>120*(1+...............+3^2009) chia hết cho 120
vậy 3^1+3^2+.............+3^1012 chia hết cho 120
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=\left(3+3^2+3^3+3^4\right)+3.\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
mà \(3+3^2+3^3+3^4=3+9+27+81=120⋮120\)
\(\Rightarrow\hept{\begin{cases}3+3^2+3^3+3^4⋮120\\3\left(3+3^2+3^3+3^4\right)⋮120\\3^{2008}\left(3+3^2+3^3+3^4\right)⋮120\end{cases}.......}\)
\(\Rightarrow3+3^2+3^3+...+3^{2012}⋮120\)
OE YTEHOBYEOBYETEBETWTETERTVJFHRDS123452435UI573367367645747T47WP1S--DDF-
V
-]
34-9
c
?'3V-'-'
'
-'
V'
-'
'
-6'
3-'C-'
-'
V6-'
T-'
6-9369--959295-2===
\(3^1+3^2+3^3+3^4+...+3^{2012}\)
\(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+3^4\left(3^1+3^2+3^3+3^4\right)+...+3^{2008}\left(3^1+3^2+3^3+3^4\right)\)
\(=120\left(1+3^4+...+3^{2008}\right)\)chia hết cho \(120\).