\(1\frac{17}{20}\). Tử số của phân số 1, phân số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

Tổng của 3 phân số tối giản là $1\frac{17}{20}$11720 . Tử số của phân số thứ nhất, thứ hai, thứ 3 tỉ lệ với 3; 7; 11 và mẫu của 3 phân số theo thứ tự tỉ lệ với 10; 20; 40. Tìm 3 phân số đó

16 tháng 11 2015

Ít ra giang còn có người tán nha tui ko có ai quan tâm mà có thì toàn bọn tui ghét hic mà fa một gia đình vui mà

Gọi tử của ba phân số tối giản là a,b,c

mẫu của ba phân số tối giản là ,d,e,f

Ta có : Tử của ba phân số tối giản tỉ lệ với 3,4,5

=> \dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a​=4b​=5c

mà tổng của chúng là -2 => a+b+c =-2

Áp dụng t/c của dãy tỉ só bằng nhau ,có ;

\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a​=4b​=5c =\dfrac{a+b+c}{3+4+5}=-\dfrac{2}{12}=-\dfrac{1}{6}=3+4+5a+b+c​=−122​=−61​

\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=-\dfrac{1}{6}\Rightarrow a=-\dfrac{1}{2}\\\dfrac{b}{4}=\dfrac{-1}{6}\Rightarrow b=-\dfrac{2}{3}\\\dfrac{c}{5}=-\dfrac{1}{6}\Rightarrow c=-\dfrac{5}{6}\end{matrix}\right.⇒⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧​3a​=−61​⇒a=−21​4b​=6−1​⇒b=−32​5c​=−61​⇒c=−65​​

Tương tự ta tìm được mẫu của ba phân số tối giản lần lượt là d = -\dfrac{12}{13};e=-\dfrac{8}{13};f=-\dfrac{6}{13}−1312​;e=−138​;f=−136​

Vậy ba phân số tối giản là \dfrac{a}{d}=da​= \dfrac{6}{13};\dfrac{b}{e}=\dfrac{16}{39};\dfrac{c}{f}=\dfrac{5}{13}136​;eb​=3916​;fc​=135​
 

5 tháng 8 2016

gọi 2 phân số đó là \(\frac{a}{b}\) và \(\frac{c}{d}\)

theo đề ta có:

\(\frac{a}{b}-\frac{c}{d}=\frac{3}{196}\)   (1)

\(\frac{a}{c}=\frac{3}{5}=>a=\frac{3c}{5}\)  (2)

\(\frac{b}{d}=\frac{4}{7}=>b=\frac{4d}{7}\)   (3)

lấy (2) và (3) thay vào (1) ta có:

\(\frac{21c}{20d}-\frac{c}{d}=\frac{3}{196}\)

\(=>\frac{c}{d}=\frac{16}{49}\)

thay vào (1): \(\frac{a}{b}=\frac{9}{28}\)

=> 2 phân số cần tìm là \(\frac{15}{49}va\frac{9}{28}\)

5 tháng 8 2016

Gọi 2 phân số cần tìm là a/b và c/d. 
- Giả sử a/b > c/d 
Theo đề bài, ta có: 
{a : c = 3 : 5 
{b : d = 4 : 7 
<=> Tỉ số của 2 phân số là: a/b : c/d = 3/4 : 5/7 
<=> a/b . d/c = 3/4 . 7/5 
<=> ad / bc = 21/20 
<=> ad = 21/20 . bc = (21bc)/20 
Ta lại có: 
a/b - c/d = (ad - bc)/bd = 3/196 
<=> [(21bc) / 20 - bc] / bd = 3/196 
<=> [(21bc) / 20] / bd - bc / bd = 3/196 
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196 
<=> 21c / 20d - c / d = 3/196 
<=> 21c / 20d - 20c / 20d = 3/196 
<=> c / 20d = 3/196 
=> c : 3 và 20d : 196 => c : 3 và d : 196/20 => c : 3 và d : 49/5 
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49 
=> c = 15 ; d = 49 
=> a : c = 3 : 5 => a : 15 = 3 : 5 => a = 9 
và b : d = 4 : 7 => b : 49 = 4 : 7 => b = 28 
=> a/b = 9/28 và c/d = 15/49 
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài) 
- Do đó, 2 phân số cần tìm là 9/28 và 3/196

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)