Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
\(\Leftrightarrow3sinx-4sin^3x-\sqrt{3}cosx=2sinx\)
\(\Leftrightarrow4sin^3x-sinx+\sqrt{3}cosx=0\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow4tan^3x-tanx\left(1+tan^2x\right)+\sqrt{3}\left(1+tan^2x\right)=0\)
\(\Leftrightarrow3tan^3x+\sqrt{3}tan^2x-tanx+\sqrt{3}=0\)
Bạn xem lại đề, pt bậc 3 này ko giải được (nghiệm rất xấu)
1.
\(\Leftrightarrow\sqrt{3}cos^2x-\sqrt{3}+cos^2x+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx=0\)
\(\Leftrightarrow-\sqrt{3}sin^2x+cosx+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+\sqrt{3}sinx\right)-\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+\sqrt{3}sinx-1\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\left[sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\end{matrix}\right.\)
a)
\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)
c)
\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)
\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)
d)
\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)
f)
\(\cos 2x-\cos 4x=0\)
\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)
b,e,g bạn xem lại đề, đơn vị không thống nhất.
Bài 1:
ĐK : sinx cosx > 0
Khi đó phương trình trở thành
sinx+cosx=\(2\sqrt{\sin x\cos x}\)
ĐK sinx + cosx >0 → sinx>0 ; cosx>0
Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Vậy ...
Bài 2:
ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)
Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :
\(x=\frac{\pi}{12}\) (TMĐK)
\(x=-\frac{11\pi}{12}\) (KTMĐK)
\(x=\frac{5\pi}{12}\) (KTMĐK)
\(x=-\frac{7\pi}{12}\) (TMĐK)
Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\) và \(x=-\frac{7\pi}{12}\)
a.
\(\Leftrightarrow\left[{}\begin{matrix}3x=90^0-x+k360^0\\3x=90^0+x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{45^0}{2}+k90^0\\x=45^0+k180^0\end{matrix}\right.\)
b.
\(\Leftrightarrow cos\left(3x+45^0\right)=cos\left(x-180^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=x-180^0+k360^0\\3x+45^0=180^0-x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{225^0}{2}+k180^0\\x=\frac{135^0}{4}+k90^0\end{matrix}\right.\)
c.
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=-x+k2\pi\\2x+\frac{\pi}{3}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
d.
\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=cos2x\)
\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-x+k2\pi\\x-\frac{2\pi}{3}=2x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{12}+k\pi\\x=-\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
e.
\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=sin\left(2x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=cos\left(\frac{\pi}{6}-2x\right)\)
\(\Leftrightarrow2x-\frac{\pi}{4}=\frac{\pi}{6}-2x+k2\pi\)
\(\Leftrightarrow x=\frac{5\pi}{48}+\frac{k\pi}{2}\)
a/
Đặt \(cosx=t\Rightarrow0< t\le1\)
\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)
\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)
\(\Leftrightarrow t=2m-2\)
\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)
b.
\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)
Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)
\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)
Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)
\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)
\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)
\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)
+ , cos3 x = 0 => 0 - 4 - 0 + 1 = 0 ( vô nghiệm)
+, cos3 x \(\ne\)0 , chia cả 2 vế của pt cho cos3 x , ta đc
\(\frac{\cos^3x-4sin^3x-3cosx.sin^2x+sinx}{cos^3x}=0\)
1 - \(\frac{4\sin^3x}{\cos^3x}\) - \(\frac{3\sin^2x}{cos^2x}\) + \(\frac{1}{\cos^2x}\)= 0
1 - 4 tan3x - 3 tan2x + 1 + tan2x = 0
-4 tan3x - 2tan2x + 2 = 0
=> tan x = tan \(\alpha\) ( tan \(\alpha\approx0,66\))
=> x = \(\alpha+k.\pi\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia2 vế cho \(cos^3x\)
\(4tan^3x-\frac{tanx}{cos^2x}-\frac{1}{cos^2x}=0\)
\(\Leftrightarrow4tan^3x-tanx\left(1+tan^2x\right)-\left(1+tan^2x\right)=0\)
\(\Leftrightarrow3tan^3x-tan^2x-tanx-1=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x+2tanx+1\right)=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
Hai nghiệm âm lớn nhất là \(x=\left\{-\frac{3\pi}{4};-\frac{7\pi}{4}\right\}\) có tổng là \(-\frac{5\pi}{2}\)