Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
2/
Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)
\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)
\(\Rightarrow m^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)
Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)
\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)
Vậy n = 1002
Có: n3-n+2=(n3-n)+2=n(n2-1)+2=n(n-1)(n+1)+2
Dễ thấy (n-1)n(n+1) là tích 3 STN liên tiếp nên chia hết cho 3
=>(n-1)n(n+1)+2 chia 3 dư 2
=>n3-n+2 chia 3 dư 2 nên không là SCP
Đặt \(n^2+2004=a^2\)
\(\Leftrightarrow a^2-n^2=2004\)
\(\Leftrightarrow\left(a-n\right)\left(a+n\right)=2004\)
Để ý rằng \(2004=2^2\cdot3\cdot167\)
Nên cậu cứ xét ước nha !
giải sử 1002 + n2là số chính phương
=> 1002 + n2=a2
=> a2-n2=1002
mà hiệu của hai số chính phương chia 4 số dư chỉ có thể là 0 hoặc 1
mà 1002 chia 4 dư 2
=> không tồn tại số tự nhiên n để 1002 + n2 là số chính phương
nhi giỏi ghê ta, khâm phục!!!