Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Lời giải:
Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)
\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)
\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:
\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)
\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)
\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)
\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)
Lời giải:
Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)
\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)
\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:
\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)
\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)
\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)
\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)