K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Gọi vận tốc xe đi \(\frac{3}{4}\)quãng đường đầu là V

Thời gian xe đi \(\frac{3}{4}\)quãng đường đầu là \(\frac{120.3}{4.V}=\frac{90}{V}\)

Vận tốc xe đi \(\frac{1}{4}\)quãng đường sau là \(\frac{V}{2}\)

Thời gian xe đi \(\frac{1}{4}\)quãng đường sau là \(\frac{120.1.2}{4.V}=\frac{60}{V}\)

Vận tốc xe đi từ B về A là \(V+10\)

Thời gian xe đi từ B về A là \(\frac{120}{V+10}\)

Tổng thời gian xe đi là 8,5h nên ta có

\(\frac{90}{V}+\frac{60}{V}+0,5+\frac{120}{V+10}=8,5\)

\(\Leftrightarrow4x^2-95x-750=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=30\\x=\frac{-25}{4}\left(loại\right)\end{cases}}\)

Vậy vận tốc xe chạy từ B về A là 30 + 10 = 40 (km/h)

28 tháng 10 2016

cái bài này ở sách nâng cao lớp 7

29 tháng 7 2019

Gọi vận tốc của xuồng lúc đi là x (km/h, x > 5).

⇒ Vận tốc của xuồng lúc về là x – 5 (km/h).

Thời gian đi là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Quãng đường về là: 120 + 5 = 125 km

Thời gian về là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Theo bài ra ta có phương trình:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

QUẢNG CÁO

Có a = 1; b = -10; c = -600 ⇒ Δ’ = (-5)2 – 1.(-600) = 625

Phương trình có hai nghiệm phân biệt:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trong hai nghiệm chỉ có nghiệm x = 30 thỏa mãn điều kiện.

Vậy vận tốc xuồng lúc đi là 30 km/h.

11 tháng 12 2019

Gọi vận tốc của xuồng lúc đi là x (km/h, x > 5).

⇒ Vận tốc của xuồng lúc về là x – 5 (km/h).

Thời gian đi là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Quãng đường về là: 120 + 5 = 125 km

Thời gian về là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Theo bài ra ta có phương trình:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 1; b = -10; c = -600  ⇒   Δ ’   =   ( - 5 ) 2   –   1 . ( - 600 )   =   625

Phương trình có hai nghiệm phân biệt:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trong hai nghiệm chỉ có nghiệm x = 30 thỏa mãn điều kiện.

Vậy vận tốc xuồng lúc đi là 30 km/h.

Kiến thức áp dụng

Để giải bài toán bằng cách lập phương trình ta làm theo các bước:

Bước 1: Lập phương trình

   + Chọn ẩn và đặt điều kiện cho ẩn

   + Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.

   + Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình

Bước 3: Đối chiếu điều kiện rồi kết luận.

4 tháng 4 2017

Gọi vận tốc của xuồng lúc đi là x (km/h), x > 0, thì vân tốc lúc về là x - 5 (km/h).

Vì khi đi có nghỉ 1 giờ nên thời gian khi đi hết tất cả là: + 1 (giờ)

Đường về dài: 120 + 5 = 125 (km)

Thời gian về là: (giờ)

Theo đầu bài có phương trình: + 1 =

Giải phương trình:

x2 – 5x + 120x – 600 = 125x ⇔ x2 – 10x – 600 = 0

∆’ = (-5)2 – 1 . (-600) = 625, √∆’ = 25

x1 = 5 – 25 = -20, x2 = 5 + 25 = 30

Vì x > 0 nên x1 = -20 không thỏa mãn điều kiện của ẩn.

Trả lời: Vận tốc của xuồng khi đi là 30 km/h



4 tháng 4 2017

Bài 43 (SGK trang 58)

Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài 120 km. Trên đường đi, xuồng có nghỉ lại 1 giờ ở thị trấn Năm Căn. Khi về, xuồng đi theo đường khác dài hơn đường lúc đi 5 km và với vận tốc nhỏ hơn vận tốc lúc đi là 5 km/h. Tính vận tốc của xuồng lúc đi, biết rằng thời gian về bằng thời gian đi.

Gọi x là vận tốc lúc xuồng đi(km/h, x > 5)
thì Vận tốc lúc về sẽ là x - 5 (km/h)
Tính cả 1 giờ nghỉ ở Năm Căn thì thời gian đi từ thành phố Cà Mau đến Đất Mũi là 120x + 1 (giờ)
Quãng đường lúc về dài: 120 + 5 = 125 (km)
Thời gian đi về hết: 125x−5 (giờ)
Theo đề bài ta có phương trình:
120x + 1 = 125x−5 <=> 120(x - 5) + x(x - 5) = 125x <=> 120x - 600 + x2 - 5x - 125x = 0 <=> x2 - 10x - 600 = 0
Giải phương trình x2 - 10x - 600 = 0
Δ′ = (−5)2 - 1.(-600) = 25 + 600 = 625
√Δ′ = √625 = 25
Phương trình có hai nghiệm x1 = -(-5) + 25 = 30, x2 = -(-5) - 25 = -20
Vì x > 5 nên ta chỉ chọn giá trị x1
Vậy vận tốc xuồng lúc đi là 30 (km/h)

25 tháng 7 2017

\(\sqrt{-x^2+2x-1}\) có nghĩa khi 

\(-x^2+2x-1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\) ( luôn đúng)

=> với mọi x biểu thức luôn có nghĩa

b) \(\frac{\sqrt{x+1}}{x}\) có nghĩa khi:

\(\hept{\begin{cases}x+1\ge0\\x\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ne0\end{cases}}\)

c) \(\sqrt{-x^2-2}\)có nghĩa khi 

\(-x^2-2\ge0\Leftrightarrow-\left(x^2-2\right)\ge0\Leftrightarrow x^2-2\le0\Leftrightarrow x^2\le2\Leftrightarrow-2\le x\le2\)

d) \(\sqrt{2x^2-1}\)có nghĩa khi

\(2x^2-1\ge0\Leftrightarrow2x^2\ge1\Leftrightarrow x^2\ge\frac{1}{2}\Leftrightarrow-\frac{1}{2}\ge x\ge\frac{1}{2}\)

KIỂM TRA HỌC KÌ I 2017 - 2018 Bài 1 rút gọn biểu thức : a. \(2\sqrt{12}-\dfrac{2}{3}\sqrt{27}\) b.\(\sqrt{\left(\sqrt{5}-1^{ }\right)^2}+\dfrac{4}{3+\sqrt{5}}\) ] Bài 2 câu 1 cho biểu thức : \(A=\dfrac{\sqrt{x-1}+1}{2\sqrt[]{x-1}+3}\) a. diều kiện xác định của A b. tìm x , biết A=\(\dfrac{2}{5}\) câu 2 giải hệ phương trình \(\left\{{}\begin{matrix}2x+y=1\\2-2y=8\end{matrix}\right.\) Bài 3 a. vẽ đồ thị hàm số y=-x+4(d1) b. viết...
Đọc tiếp

KIỂM TRA HỌC KÌ I 2017 - 2018
Bài 1 rút gọn biểu thức :
a. \(2\sqrt{12}-\dfrac{2}{3}\sqrt{27}\) b.\(\sqrt{\left(\sqrt{5}-1^{ }\right)^2}+\dfrac{4}{3+\sqrt{5}}\) ]
Bài 2 câu 1 cho biểu thức : \(A=\dfrac{\sqrt{x-1}+1}{2\sqrt[]{x-1}+3}\)
a. diều kiện xác định của A
b. tìm x , biết A=\(\dfrac{2}{5}\)

câu 2 giải hệ phương trình \(\left\{{}\begin{matrix}2x+y=1\\2-2y=8\end{matrix}\right.\)
Bài 3 a. vẽ đồ thị hàm số y=-x+4(d1)
b. viết phương trình dường thẳng (d2) biết d2 qua M(2;-1)cắt trục tung tại điểm có tung độ bằng -5
c. tìm m để đường thẳng d3 : y=-\(\dfrac{1}{3}\)x +2(m-1) qua giao điểm của d1 và d2 .
Bài 4 cho dường trn2 tâm O, đường kính AB=2R. Trên đường tròn lấy diểm C sao cho AC=R . vẽ tiếp tuyến Ax với đường tròn .Gọi K là giao điểm của đường thẳng BC với Ax .
a. CM : tam giác ABC vuông và tính số đo góc \(\widehat{ABC}\)
b. từ A kẻ AE vuông góc với KO tại E . CM KC.BC=OE.OK
c. đường thẳng AE cắt đường tròn tâm O tại điểm thứ hai M . CM KM là tiếp tuyến của O
d. đường thẳng vuông góc với AB tại O cắt BK tại I và cắt đường thẳng BM tại N. CM:IO=IN

Hướng dẫn giải:

0