K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

31. a) \(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b+3ab^2\)

\(=a^3+b^3\)

b) \(\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\)

Áp dụng: \(a^3+b^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=-125+90\)

\(=-35\)

35. a) \(34^2+66^2+68.66\)

\(=34^2+2.34.66+66^2\)

\(=\left(34+66\right)^2=100^2=10000\)

b) \(74^2+24^2-48.74\)

\(=74^2-2.74.24+24^2\)

\(=\left(74-24\right)^2=50^2=2500\)

Nhớ tick

15 tháng 9 2019

Bạn ghi hẳn đề lên nhé

Lên mạng tra nha cou có đó

7 tháng 3 2021

Lên mạng tra cho nó nhanh

10 tháng 9 2019

342+662+68.66

=342+68.66+662

=342+2.34.66+662

=(34+66)2=1002

=10000

14 tháng 9 2019

342+662+68.66

= 342+2.34.66+662

=(34+66)2

sao nhiều vs bạn lm sao nổi

20 tháng 8 2017

bạn lm mấy bài cg đk

26 tháng 2 2020

Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chúc bạn học tốt~~

26 tháng 2 2020

A B C K H I

a) Xét hai Δvuông HBC và ΔKCB

∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung

⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)

⇒ CH = BK

b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK

- Quảng cáo -

AK = AB – BK và AH = AC – CH ⇒ AK = AH

⇒ AK/AB = AH/AC ⇒ KH//BC

c) Kẻ đường cao AI của Δ ABC và xét Δ IAC

ΔHBC có ∠ACI = ∠BCH

⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b

Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)

\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)

\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)

3 tháng 9 2017

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân. b) Ta có AC // BE suy ra = (3)

∆BDE cân tại B (câu a) nên = (4)

Từ (3) và (4) suy ra =

Xét ∆ACD và ∆BCD có AC = BD (gt)

= (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (cmt - câu b)

=> Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

P/S : Mình lười vẽ hình nên chỉ mướn trên mạng nha!
3 tháng 9 2017

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BÉ song song nên chúng bằng nhau:

AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE \(\Rightarrow\widehat{C}_1=\widehat{E}\) (3)

∆BDE cân tại B (câu a) nên \(\Rightarrow\widehat{D_1}=\widehat{E}\) (4)

Từ (3) và (4) \(\Rightarrow\widehat{C_1}=\widehat{D_1}\)

Xét ∆ACD và ∆BCD có

AC = BD (gt)

\(\widehat{C_1}=\widehat{D_1}\) (cmt)

CD cạnh chung

\(\Rightarrow\) ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

26 tháng 5 2020

2, \(\widehat{ABC} + \widehat{BCA} = \widehat{BAC} = 90^0 ⇒ \widehat{BCA} = 90^0 - \widehat{ABC}\)

\(\widehat{ABC} +\widehat{ BAH} = \widehat{BAC} =90^0⇒\widehat{BAH} = 90^0 - \widehat{ABC}\)

\(\widehat{BCA} = \widehat{BAH}\)

XÉT \(\bigtriangleup\)HBA và\(\bigtriangleup\) HAC có :

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{BCA}=\widehat{BAH}\)

\(\bigtriangleup\)HBA ∼ \(\bigtriangleup\) HAC

b, Áp dụng hệ thức \(b^2=a.b'\) vào \(\bigtriangleup{ABC}\) vuông tại A , ta có :

\(AC^2=BC.CH\) (đpcm)

c, Áp dụng hệ thức \(h^2=b'.c'\) vào \(\bigtriangleup{ABC}\) vuông tại A, ta có :

\(AH^2=BH.CH\) (đpcm)

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

20 tháng 9 2017

Bài giải:

a) ∆ABD và ∆ACE có

AB = AC (gt)

\(\widehat{A}\) chung

\(\widehat{B_1}=\widehat{C_1}\left(=\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}\widehat{C}\right)\)

Nên ∆ABD = ∆ACE (g.c.g)

Suy ra AD = AE

Chứng minh BEDC là hình thang cân như câu a của bài 15.

b) Vì BEDC là hình thang cân nên DE // BC.

Suy ra \(\widehat{D_1}=\widehat{B_2}\) (so le trong)

Lại có \(\widehat{B_2}=\widehat{B_1}\) nên \(\widehat{B_1}=\widehat{D_1}\)

Do đó tam giác EBD cân. Suy ra EB = ED.

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.


Chúc bạn học tốt!

20 tháng 9 2017

bạn @Phạm Hoàng Giang ơi lời giải hay hả bạn ?