Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K M
Gọi BM là p/g của góc BAH
+) Tam giác ABC vuông tại A => góc ACB + B = 900
Tam giác ABH vuông tại H (do AH là đường cao) => góc BAH + góc B = 90o
=> góc BAH = góc ACB (cùng phụ với góc B)
=> góc BAH/2 = góc ACB /2
Mà góc KAH = BAH/2 (do BM là p/g của góc ABH) nên góc KAH = góc ACB/2
+) Xét tam giác AKC có:
góc KAC + ACK = góc KAH + góc HAC + ACK = góc ACB/2 + góc HAC + góc ACB/2 = HAC + (ACB/2 + ACB/2) = HAC + ACB = 90o
(Vì tam giác AHC vuông tại H)
Vậy góc KAC + ACK = 90o => góc AKC = 90o => AK | KC
Vậy....
Câu 1:
Giải:
Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=-3k,z=5k\)
Mà \(xyz=-30000\)
\(\Rightarrow2k\left(-3\right)k5k=-30000\)
\(\Rightarrow\left(-30\right).k^3=-30000\)
\(\Rightarrow k^3=1000\)
\(\Rightarrow k=10\)
\(\Rightarrow x=20;y=-30;z=50\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(20;-30;50\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)
Tương tự ta có b = c, c = d, d = a
\(\Rightarrow a=b=c=d\)
\(\Rightarrowđpcm\)
3, áp dụng tính chất dãy tỉ số bằng nhau:
=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)
\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)
\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)
\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)
\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)
từ (1).(2).(3)(4)=>a=b=c=d(dpcm)
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC
BTS là cục cứt chó j , nó đéo xứng làm cục cứt của the coconut tao
con kia là đồ giả mạo
Mà ông Duy có j hay đâu mà bọn m giả lắm thế
Bài giải
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\frac{1}{2}-\frac{1}{2006}\)
\(A=\frac{501}{1003}\)
a, Xét tg AHI và tg AKI ta có:
góc H = góc K = 90
AI là cạnh chung
góc HAI = góc KAI ( AI là tia phân giác góc BAC)
=> tg AHI =tg AKI ( cạnh huyền-góc nhọn)
=> AH=AK
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
minh muon chet qua troi!!!!!!
mk chư học đến căn bấc 2