\(xyz-xy^2-xz^2\)

       B = \(y^3+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

Chưa phân loại

1 tháng 2 2016

x-y-z=0

=>x=y+z

=>x2=y2+z2+2yz

=>y2+z2=x2-2yz

*A=xyz-xy2-xz2=x.(yz-y2-z2)=x.[yz-(x2-2yz)]=x.(3yz-x2)=3xyz-x3

*B=y3+z3=(y+z)(x2-yz+z2)=x.(x2-2yz-yz)=x3-3xyz=-(3xyz-x3)

Vậy A và B đối nhau

11 tháng 4 2016

m

24 tháng 10 2015

ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

            \(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)

             \(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)

ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\)\(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)

vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6

 

15 tháng 11 2017

Đề không sai đâu !!

18 tháng 10 2018

Bài a làm gì có z

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!Bài 1: Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)Bài 2: Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)Bài 3:Cho đa thức:\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)Biết \(x+y-2=0\). Tính M.Bài 4:Cho 2 đa thức, m là...
Đọc tiếp

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!

Bài 1: 

Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)

Bài 2: 

Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)

Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)

Bài 3:

Cho đa thức:

\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)

Biết \(x+y-2=0\). Tính M.

Bài 4:

Cho 2 đa thức, m là hằng

\(q\left(x\right)=x^2+mx+m^2\)

\(p\left(x\right)=x^2+2\left(m+x\right)\)

Biết \(q\left(1\right)=p\left(-1\right)\). Tìm m.

Bài 5:

Cho tam giác nhọn ABC, đường cao AH. Phía ngoài tam giác ABC, vẽ 2 tam giác ABE và ACF vuông cân tại B và C. Trên tia đối tia AH, lấy I sao cho AI=BC.

CMR:

a)  \(\Delta ECB=\Delta BIA\)

b) EC=BI; EC vuông góc với BI

c) BF,AH,CE đồng quy

Bài 6: 

Chứng minh rằng tổng bình phương 5 số tự nhiên liên tiếp không là số chính phương.

3
22 tháng 2 2016

Dễ óa

22 tháng 2 2016

A H B C F E I

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy