Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 chia hết cho 55
b) 817 - 279 + 329 = (34)7 - (33)9 + 329 = 328 - 327 + 329 = 326(32 - 3 + 33) = 326.33 chia hết cho 33
c) 812 - 233 - 230 = (23)12 - 233 - 230 = 236 - 233 - 230 = 230(26 - 23 - 1) = 230.55 chia hết cho 55
d) 109 + 108 + 107 = 107(102 + 10 + 1) = 107.111 mà 107 chia hết cho 5(vì tận cùng là 0) => 109 + 108 + 107 chia hết : 111.5 = 555
e) 911 - 910 - 99 = 98(93 - 92 - 9) = 98.639 chia hết cho 639 =>\(\frac{9^{11}-9^{10}-9^9}{639}\in N\)
f) 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45.
a) 76+75-74
= 74(72+7-1)
= 74 . 55 chia hết cho 55 (đpcm)
b) Thôi tôi đi ngủ đây nhớ k cho tôi
a) \(7^6+7^5-7^4=7^4.7^2+7^4.7+7^4.1\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55\)
Mà \(55⋮11\Rightarrow7^4.55⋮11\Leftrightarrow7^6+7^5-7^4⋮11\left(đpcm\right).\)
b) \(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10\)
\(=10^6.\left(10^3+10^2+10\right)\)
\(=10^6.1110\)
Mà \(1110⋮222\Rightarrow10^6.110⋮222\Leftrightarrow10^9+10^8+10^7⋮222\left(đpcm\right).\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.3^2+3^{26}.3+3^{26}.1\)
\(=3^{26}.\left(3^2+3+1\right)\)
\(=3^{24}.3^2.5\)
\(=3^{24}.45\)
Mà \(45⋮45\Rightarrow3^{24}.45⋮45\Leftrightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right).\)
d) \(24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{34}\)
\(=2^{196}.3^{126}\)
\(=2^{189}.2^7.3^{126}\)
\(=\left[\left(2^3\right)^{63}.\left(3^2\right)^{63}\right].2^7\)
\(=\left(8^{63}.9^{63}\right).2^7\)
\(=72^{63}.2^7\)
Mà \(72^{63}⋮72^{63}\Rightarrow72^{63}.2^7⋮72^{63}\Leftrightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\left(đpcm\right).\)
làm câu đầu nhé.
7^6+7^5-7^4=7^4* 7^2 + 7^4* 7^1 -7^4 * 1
=7^4 * (7^2+7^1-1(
= 7^4 * ( 49+7-1(
=7^4* 55
suy ra chia hết cho 55
các câu còn lại tương tự nhé bạn
Bài 1: Ta có: 8^9<9^9
7^9<9^9
.........................
1^9<9^9
=> 8^9+7^9+6^9+...+1^9<9^9+9^9+9^9+...+9^9=9^9.9=9^10
=>9^10>8^9+7^9
Bài 1:
Ta có:
\(9^{10}\div9^9=9\)
Và \(\left(8^9+7^9+6^9+5^9+...+2^9+1^9\right)\div9^9\)
\(=\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+\left(\dfrac{6}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9\)
Mà \(\left(\dfrac{8}{9}\right)^9< 1;\left(\dfrac{7}{9}\right)^9< 1;...;\left(\dfrac{1}{9}\right)^9< 1\)
\(\Rightarrow\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9< 1+1+...+1=9\)
Vậy \(9^{10}>8^9+7^9+6^9+...+2^9+1^9\)
Bài 2:
\(45=9.5\)
Ta có:
\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}36^{39}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Leftrightarrow\left(36^{39}-9^{10}\right)⋮9\)
Lại có:
\(36^{39}=\overline{...6}^{39}=\overline{...6}\Rightarrow36^{39}\) có chữ số tận cùng là \(6\)
Nên chia cho \(5\) dư \(1\)
\(9^{10}\) cũng có chữ số tận cùng là chữ số \(1\)
Nên chia cho \(5\) cũng dư \(1\)
\(\Rightarrow\left(36^{39}-9^{10}\right)⋮5\)
Mà \(\left(5;9\right)=1\) Nên \(\left(36^{39}-9^{10}\right)⋮45\) (Đpcm)
1/Tacó:
89^99 + 79^99 + 69^99 + 59^99 +......+ 29^99 + 19^99 < 89^99 . 8 = 810^{10}10<910^{10}10
=> 89^99 + 79^99 + 69^99 + 59^99 +.......+ 29^99 +19^99 < 910^{10}10
mk chỉ lm đc bài 1 thôi b ạ b2 mk chịu
ý a ) bạn dưới chứng minh rồi nha ; mình làm ý b
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(........\)
\(1^9>9^9\)
Cộng vế với vế ta được :
\(8^9+7^9+...+1^9< 9^9+9^9+...+9^9\) (có 8 số hạng \(9^9\) ) \(=8.9^9< 9.9^9=9^{10}\)
Vậy \(8^9+7^9+6^9+....+1^9< 9^{10}\)
a,(36^36-9^10):45
vì 45=9x5
=>(36^36-9^10) chia hết cho 9(1)
36^36 tận cùng là 6
9^10 tận cùng là 1
=>36^36-9^10 tận cùng là 5 và do đó chia hết cho 5
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2)=>36^36-9^10 chia hết cho 45
\(9^8+9^7+9^6=9^6.\left(9^0+9^1+9^2\right)=9^6.91.\)
Vậy \(9^8+9^7+9^6\)chia hết cho 91
mk ko bt bài này khó quá